論文の概要: Towards a Spatiotemporal Fusion Approach to Precipitation Nowcasting
- arxiv url: http://arxiv.org/abs/2505.19258v1
- Date: Sun, 25 May 2025 18:27:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 16:58:43.012036
- Title: Towards a Spatiotemporal Fusion Approach to Precipitation Nowcasting
- Title(参考訳): 時空間融合による降水開始に向けて
- Authors: Felipe Curcio, Pedro Castro, Augusto Fonseca, Rafaela Castro, Raquel Franco, Eduardo Ogasawara, Victor Stepanenko, Fabio Porto, Mariza Ferro, Eduardo Bezerra,
- Abstract要約: リオデジャネイロの気象雨量計観測所のデータを統合することで,降水量計のためのデータ融合手法を提案する。
我々はSTConvS2Sと呼ばれる数値的な気象深度学習アーキテクチャを採用し、9 x 11グリッドをカバーする構造化データセットを活用している。
実験された構成のうち、核融合モデルでは1時間リードで重降雨(25 mm/h以上)に対して0.2033のF1スコアを達成する。
- 参考スコア(独自算出の注目度): 0.44940580193534
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With the increasing availability of meteorological data from various sensors, numerical models and reanalysis products, the need for efficient data integration methods has become paramount for improving weather forecasts and hydrometeorological studies. In this work, we propose a data fusion approach for precipitation nowcasting by integrating data from meteorological and rain gauge stations in Rio de Janeiro metropolitan area with ERA5 reanalysis data and GFS numerical weather prediction. We employ the spatiotemporal deep learning architecture called STConvS2S, leveraging a structured dataset covering a 9 x 11 grid. The study spans from January 2011 to October 2024, and we evaluate the impact of integrating three surface station systems. Among the tested configurations, the fusion-based model achieves an F1-score of 0.2033 for forecasting heavy precipitation events (greater than 25 mm/h) at a one-hour lead time. Additionally, we present an ablation study to assess the contribution of each station network and propose a refined inference strategy for precipitation nowcasting, integrating the GFS numerical weather prediction (NWP) data with in-situ observations.
- Abstract(参考訳): 各種センサ,数値モデル,分析製品からの気象データの利用が増加し,気象予報や気象学研究の効率化のために,効率的なデータ統合手法の必要性が高まっている。
本研究では,リオデジャネイロ大都市圏の気象・雨量計観測所のデータとERA5の再解析データとGFS数値気象予報データを統合することで,降水量推定のためのデータ融合手法を提案する。
我々は、STConvS2Sと呼ばれる時空間深層学習アーキテクチャを採用し、9 x 11グリッドをカバーする構造化データセットを活用している。
本研究は2011年1月から2024年10月までの期間にわたって行われ,3つの地上局システムの統合の影響について検討した。
実験された構成のうち、核融合モデルでは1時間のリードタイムで25 mm/hを超える重降雨を予測するためのF1スコアが0.2033に達する。
さらに,各局ネットワークの貢献度を評価するためのアブレーション研究を行い,降水量予測(GFS数値天気予報(NWP)データとその場観測を統合し,降水量予測のための洗練された推論戦略を提案する。
関連論文リスト
- Appa: Bending Weather Dynamics with Latent Diffusion Models for Global Data Assimilation [4.430758443755128]
Appaはスコアベースのデータ同化モデルで、地球規模の大気軌道を0.25度と1時間間隔で生成する。
この結果から,将来的な大気モデルシステムの基礎として,潜在スコアに基づくデータ同化が確立される。
論文 参考訳(メタデータ) (2025-04-25T22:14:29Z) - Data-driven rainfall prediction at a regional scale: a case study with Ghana [4.028179670997471]
最先端の数値天気予報(NWP)モデルは、アフリカの熱帯地域で熟練した降雨予測を作成するのに苦労している。
2つのU-Net畳み込みニューラルネットワーク(CNN)モデルを開発し、12時間と30時間リード時の24時間降雨を予測する。
また,従来のNWPモデルとデータ駆動モデルを組み合わせることにより,予測精度が向上することがわかった。
論文 参考訳(メタデータ) (2024-10-17T22:07:53Z) - Generative Data Assimilation of Sparse Weather Station Observations at Kilometer Scales [5.427841765899196]
そこで本研究では,現実的に複雑な1kmスケールの気象条件下でのスコアベースデータ同化の実現可能性を示す。
40の気象観測所からの観測を取り入れることで、左の観測所で10%低いRMSEが達成される。
ますます野心的な地域国家ジェネレータと、In situ、地上ベース、衛星リモートセンシングデータストリームの集合を組み合わす拡張を探求する時期だ。
論文 参考訳(メタデータ) (2024-06-19T10:28:11Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
気象学的ダウンスケーリングを任意の散乱ステーションスケールに拡張し、新しいベンチマークとデータセットを確立する。
データ同化技術にインスパイアされた我々は、観測データをダウンスケーリングプロセスに統合し、マルチスケールの観測先行情報を提供する。
提案手法は、複数の曲面変数上で、他の特別に設計されたベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2024-01-22T14:02:56Z) - Towards an end-to-end artificial intelligence driven global weather forecasting system [57.5191940978886]
我々は,地球規模の気象変動に対するAIに基づくデータ同化モデル,すなわちAdasを提案する。
我々は,アダスが地球観測を同化して高品質な分析を行い,長期にわたって安定して運用できることを実証した。
この手法を現実のシナリオに適用するのは,私たちが初めてです。
論文 参考訳(メタデータ) (2023-12-18T09:05:28Z) - Federated Prompt Learning for Weather Foundation Models on Devices [37.88417074427373]
天気予報のためのデバイス上のインテリジェンスでは、ローカルなディープラーニングモデルを使用して、集中型クラウドコンピューティングなしで気象パターンを分析する。
本稿では,FedPoD(Federated Prompt Learning for Weather Foundation Models on Devices)を提案する。
FedPoDは、通信効率を維持しながら、高度にカスタマイズされたモデルを得ることができる。
論文 参考訳(メタデータ) (2023-05-23T16:59:20Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
我々は、再分析データから直接トレーニングできる「GraphCast」と呼ばれる機械学習ベースの手法を導入する。
全世界で10日以上、0.25度で、数百の気象変動を1分以内で予測する。
我々は,GraphCastが1380の検証対象の90%において,最も正確な運用決定システムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-12-24T18:15:39Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
我々は,世界天気予報を迅速かつ高精度に予測するためのディープラーニングベースのシステムであるPangu-Weatherを紹介する。
初めてAIベースの手法が、最先端の数値天気予報法(NWP)を精度で上回った。
Pangu-Weatherは、極端な天気予報や大規模なアンサンブル予測など、幅広い下流予測シナリオをサポートしている。
論文 参考訳(メタデータ) (2022-11-03T17:19:43Z) - RainBench: Towards Global Precipitation Forecasting from Satellite
Imagery [6.462260770989231]
極端に降水するイベントは、発展途上国の経済と生活を定期的に破壊する。
データ駆動型ディープラーニングアプローチは、正確な複数日予測へのアクセスを広げる可能性がある。
現在、世界的な降雨予測の研究に特化したベンチマークデータセットは存在しない。
論文 参考訳(メタデータ) (2020-12-17T15:35:24Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
本研究では,500hPaの圧力レベル,2m温度,24時間の総降水量を予測するために,条件付き深部畳み込み生成対向ネットワークを用いた。
提案されたモデルは、2019年に関連する気象分野を予測することを目的として、2015年から2018年までの4年間のERA5の再分析データに基づいて訓練されている。
論文 参考訳(メタデータ) (2020-06-13T20:53:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。