論文の概要: Fractional-Boundary-Regularized Deep Galerkin Method for Variational Inequalities in Mixed Optimal Stopping and Control
- arxiv url: http://arxiv.org/abs/2505.19309v1
- Date: Sun, 25 May 2025 20:49:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 16:58:43.044772
- Title: Fractional-Boundary-Regularized Deep Galerkin Method for Variational Inequalities in Mixed Optimal Stopping and Control
- Title(参考訳): 混合最適停止・制御における変分不等式に対する分数境界規則化ディープ・ガレルキン法
- Authors: Yun Zhao, Harry Zheng,
- Abstract要約: 混合最適停止問題と制御問題により、非線型ハミルトン・ヤコビ・ベルマン作用素の変分不等式が定義される。
まず、双対アプローチを用いて線形作用素に変換し、次にフラクショナル境界規則化Deep Galerkin法を導入する。
改良された精度により、ネットワークはデュアルトランスフォーメーションを使用して元のソリューションに変換される。
- 参考スコア(独自算出の注目度): 3.514024064150887
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mixed optimal stopping and stochastic control problems define variational inequalities with non-linear Hamilton-Jacobi-Bellman (HJB) operators, whose numerical solution is notoriously difficult and lack of reliable benchmarks. We first use the dual approach to transform it into a linear operator, and then introduce a Fractional-Boundary-Regularized Deep Galerkin Method (FBR-DGM) that augments the classical $L^2$ loss with Sobolev-Slobodeckij norms on the parabolic boundary, enforcing regularity and yielding consistent improvements in the network approximation and its derivatives. The improved accuracy allows the network to be converted back to the original solution using the dual transform. The self-consistency and stability of the network can be tested by checking the primal-dual relationship among optimal value, optimal wealth, and optimal control, offering innovative benchmarks in the absence of analytical solutions.
- Abstract(参考訳): 混合最適停止と確率制御の問題は、非線型ハミルトン・ヤコビ・ベルマン作用素(HJB)の変分不等式を定義する。
まず、双対アプローチを用いて線形作用素に変換し、次に、古典的な$L^2$損失をパラボリック境界上のSobolev-Slobodeckijノルムで増大させ、正規性を強制し、ネットワーク近似とその導関数に一貫した改善をもたらすFBR-DGM(Fractional-Boundary-Regularized Deep Galerkin Method)を導入する。
改良された精度により、ネットワークはデュアルトランスフォーメーションを使用して元のソリューションに変換される。
ネットワークの自己整合性と安定性は、最適値、最適富、最適制御の間の原始二重関係をチェックし、分析解がない場合に革新的なベンチマークを提供することによって検証することができる。
関連論文リスト
- Solving nonconvex Hamilton--Jacobi--Isaacs equations with PINN-based policy iteration [1.3654846342364308]
本稿では,従来の動的プログラミングとニューラルネットワーク(PINN)を組み合わせて,非加入者ハミルトン・ヤコビ・イザック方程式を解くフレームワークを提案する。
この結果から,PINNを政策ポリシーに統合することは,高次元非加入者HJI方程式の解法として,実用的で理論的に確立された手法であることが示唆された。
論文 参考訳(メタデータ) (2025-07-21T10:06:53Z) - Learning based convex approximation for constrained parametric optimization [11.379408842026981]
本稿では、制約付き最適化問題を解決するために、入力ニューラルネットワーク(ICNN)に基づく自己教師付き学習フレームワークを提案する。
厳密な収束解析を行い、このフレームワークが元の問題のKKT近似点に収束することを示す。
提案手法は精度,実現可能性,計算効率の両立を実現している。
論文 参考訳(メタデータ) (2025-05-07T00:33:14Z) - A Fresh Look at Generalized Category Discovery through Non-negative Matrix Factorization [83.12938977698988]
Generalized Category Discovery (GCD) は、ラベル付きベースデータを用いて、ベース画像と新規画像の両方を分類することを目的としている。
現在のアプローチでは、コサイン類似性に基づく共起行列 $barA$ の固有の最適化に不適切に対処している。
本稿では,これらの欠陥に対処するNon-Negative Generalized Category Discovery (NN-GCD) フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T07:24:11Z) - Double Duality: Variational Primal-Dual Policy Optimization for
Constrained Reinforcement Learning [132.7040981721302]
本研究では,訪問尺度の凸関数を最小化することを目的として,制約付き凸決定プロセス(MDP)について検討する。
制約付き凸MDPの設計アルゴリズムは、大きな状態空間を扱うなど、いくつかの課題に直面している。
論文 参考訳(メタデータ) (2024-02-16T16:35:18Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
本稿では,ニューラルネットワークトレーニングを安定化(大規模)するための原理的手法として,線形アヘッドの理論解析を提案する。
最適化過程の不安定性は、しばしば損失ランドスケープの非単調性によって引き起こされるものであり、非拡張作用素の理論を活用することによって線型性がいかに役立つかを示す。
論文 参考訳(メタデータ) (2023-10-20T12:45:12Z) - Gradient-Free Methods for Deterministic and Stochastic Nonsmooth
Nonconvex Optimization [94.19177623349947]
非滑らかな非最適化問題は、機械学習とビジネス製造に現れる。
2つのコア課題は、有限収束を保証する効率的な方法の開発を妨げる。
GFMとSGFMの2相版も提案され, 改良された大規模評価結果が得られた。
論文 参考訳(メタデータ) (2022-09-12T06:53:24Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
制約付き意思決定プロセス (CMDP) の問題点について検討し, エージェントは, 複数の制約を条件として, 期待される累積割引報酬を最大化することを目的とする。
新しいユーティリティ・デュアル凸法は、正規化ポリシー、双対正則化、ネステロフの勾配降下双対という3つの要素の新たな統合によって提案される。
これは、凸制約を受ける全ての複雑性最適化に対して、非凸CMDP問題が$mathcal O (1/epsilon)$の低い境界に達する最初の実演である。
論文 参考訳(メタデータ) (2021-10-20T02:57:21Z) - Stochastic Gradient Descent-Ascent and Consensus Optimization for Smooth
Games: Convergence Analysis under Expected Co-coercivity [49.66890309455787]
本稿では,SGDA と SCO の最終的な収束保証として,期待されるコヒーレンシティ条件を導入し,その利点を説明する。
定常的なステップサイズを用いた場合、両手法の線形収束性を解の近傍に証明する。
我々の収束保証は任意のサンプリングパラダイムの下で保たれ、ミニバッチの複雑さに関する洞察を与える。
論文 参考訳(メタデータ) (2021-06-30T18:32:46Z) - BAMSProd: A Step towards Generalizing the Adaptive Optimization Methods
to Deep Binary Model [34.093978443640616]
最近のBNN(Binary Neural Networks)の性能は大幅に低下している。
BNNの効果的かつ効率的なトレーニングを保証することは未解決の問題である。
そこで本研究では,BAMSProdアルゴリズムを用いて,深部二元モデルの収束特性が量子化誤差と強く関連していることを示す。
論文 参考訳(メタデータ) (2020-09-29T06:12:32Z) - The Strength of Nesterov's Extrapolation in the Individual Convergence
of Nonsmooth Optimization [0.0]
ネステロフの外挿は、非滑らかな問題に対して勾配降下法の個人収束を最適にする強さを持つことを証明している。
提案手法は,設定の非滑らかな損失を伴って正規化学習タスクを解くためのアルゴリズムの拡張である。
本手法は,大規模な1-正規化ヒンジロス学習問題の解法として有効である。
論文 参考訳(メタデータ) (2020-06-08T03:35:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。