SuperAD: A Training-free Anomaly Classification and Segmentation Method for CVPR 2025 VAND 3.0 Workshop Challenge Track 1: Adapt & Detect
- URL: http://arxiv.org/abs/2505.19750v2
- Date: Tue, 27 May 2025 11:09:08 GMT
- Title: SuperAD: A Training-free Anomaly Classification and Segmentation Method for CVPR 2025 VAND 3.0 Workshop Challenge Track 1: Adapt & Detect
- Authors: Huaiyuan Zhang, Hang Chen, Yu Cheng, Shunyi Wu, Linghao Sun, Linao Han, Zeyu Shi, Lei Qi,
- Abstract summary: We propose a fully training-free anomaly detection and segmentation method based on feature extraction using the DINOv2 model named SuperAD.<n>Our method achieves competitive results on both test sets of the MVTec AD 2 dataset.
- Score: 17.160007050126403
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this technical report, we present our solution to the CVPR 2025 Visual Anomaly and Novelty Detection (VAND) 3.0 Workshop Challenge Track 1: Adapt & Detect: Robust Anomaly Detection in Real-World Applications. In real-world industrial anomaly detection, it is crucial to accurately identify anomalies with physical complexity, such as transparent or reflective surfaces, occlusions, and low-contrast contaminations. The recently proposed MVTec AD 2 dataset significantly narrows the gap between publicly available benchmarks and anomalies found in real-world industrial environments. To address the challenges posed by this dataset--such as complex and varying lighting conditions and real anomalies with large scale differences--we propose a fully training-free anomaly detection and segmentation method based on feature extraction using the DINOv2 model named SuperAD. Our method carefully selects a small number of normal reference images and constructs a memory bank by leveraging the strong representational power of DINOv2. Anomalies are then segmented by performing nearest neighbor matching between test image features and the memory bank. Our method achieves competitive results on both test sets of the MVTec AD 2 dataset.
Related papers
- OCSVM-Guided Representation Learning for Unsupervised Anomaly Detection [1.0190194769786831]
Unsupervised anomaly detection (UAD) aims to detect anomalies without labeled data.<n>We propose a novel method that tightly couples representation learning with an analytically solvable one-class SVM.<n>The model is evaluated on two tasks: a new benchmark based on MNIST-C, and a challenging brain MRI subtle lesion detection task.
arXiv Detail & Related papers (2025-07-25T13:00:40Z) - CLIP Meets Diffusion: A Synergistic Approach to Anomaly Detection [54.85000884785013]
Anomaly detection is a complex problem due to the ambiguity in defining anomalies, the diversity of anomaly types, and the scarcity of training data.<n>We propose CLIPfusion, a method that leverages both discriminative and generative foundation models.<n>We believe that our method underscores the effectiveness of multi-modal and multi-model fusion in tackling the multifaceted challenges of anomaly detection.
arXiv Detail & Related papers (2025-06-13T13:30:15Z) - Crane: Context-Guided Prompt Learning and Attention Refinement for Zero-Shot Anomaly Detections [50.343419243749054]
Anomaly Detection (AD) involves identifying deviations from normal data distributions.<n>We propose a novel approach that conditions the prompts of the text encoder based on image context extracted from the vision encoder.<n>Our method achieves state-of-the-art performance, improving performance by 2% to 29% across different metrics on 14 datasets.
arXiv Detail & Related papers (2025-04-15T10:42:25Z) - The MVTec AD 2 Dataset: Advanced Scenarios for Unsupervised Anomaly Detection [3.9682699334026563]
We present MVTec AD 2, a collection of eight anomaly detection scenarios with more than 8000 high-resolution images.<n>It comprises challenging and highly relevant industrial inspection use cases that have not been considered in previous datasets.<n>Our dataset provides test scenarios with lighting condition changes to assess the robustness of methods under real-world distribution shifts.
arXiv Detail & Related papers (2025-03-27T15:41:46Z) - PA-CLIP: Enhancing Zero-Shot Anomaly Detection through Pseudo-Anomaly Awareness [10.364634539199422]
We introduce PA-CLIP, a zero-shot anomaly detection method that reduces background noise and enhances defect detection through a pseudo-anomaly-based framework.<n>The proposed method integrates a multiscale feature aggregation strategy for capturing detailed global and local information.<n>It outperforms existing zero-shot methods, providing a robust solution for industrial defect detection.
arXiv Detail & Related papers (2025-03-03T08:29:27Z) - Exploring Large Vision-Language Models for Robust and Efficient Industrial Anomaly Detection [4.691083532629246]
We propose Vision-Language Anomaly Detection via Contrastive Cross-Modal Training (CLAD)<n> CLAD aligns visual and textual features into a shared embedding space using contrastive learning.<n>We demonstrate that CLAD outperforms state-of-the-art methods in both image-level anomaly detection and pixel-level anomaly localization.
arXiv Detail & Related papers (2024-12-01T17:00:43Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
This paper introduces a comprehensive visual anomaly detection benchmark, ADer, which is a modular framework for new methods.
The benchmark includes multiple datasets from industrial and medical domains, implementing fifteen state-of-the-art methods and nine comprehensive metrics.
We objectively reveal the strengths and weaknesses of different methods and provide insights into the challenges and future directions of multi-class visual anomaly detection.
arXiv Detail & Related papers (2024-06-05T13:40:07Z) - M3DM-NR: RGB-3D Noisy-Resistant Industrial Anomaly Detection via Multimodal Denoising [63.39134873744748]
Existing industrial anomaly detection methods primarily concentrate on unsupervised learning with pristine RGB images.
This paper proposes a novel noise-resistant M3DM-NR framework to leverage strong multi-modal discriminative capabilities of CLIP.
Extensive experiments show that M3DM-NR outperforms state-of-the-art methods in 3D-RGB multi-modal noisy anomaly detection.
arXiv Detail & Related papers (2024-06-04T12:33:02Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Industrial Anomaly Detection and Localization Using Weakly-Supervised Residual Transformers [44.344548601242444]
We introduce a novel framework, Weakly-supervised RESidual Transformer (WeakREST), to achieve high anomaly detection accuracy.<n>We reformulate the pixel-wise anomaly localization task into a block-wise classification problem.<n>We develop a novel ResMixMatch algorithm, capable of handling the interplay between weak labels and residual-based representations.
arXiv Detail & Related papers (2023-06-06T08:19:30Z) - Multimodal Industrial Anomaly Detection via Hybrid Fusion [59.16333340582885]
We propose a novel multimodal anomaly detection method with hybrid fusion scheme.
Our model outperforms the state-of-the-art (SOTA) methods on both detection and segmentation precision on MVTecD-3 AD dataset.
arXiv Detail & Related papers (2023-03-01T15:48:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.