Multi-Agent Reinforcement Learning in Cybersecurity: From Fundamentals to Applications
- URL: http://arxiv.org/abs/2505.19837v1
- Date: Mon, 26 May 2025 11:19:43 GMT
- Title: Multi-Agent Reinforcement Learning in Cybersecurity: From Fundamentals to Applications
- Authors: Christoph R. Landolt, Christoph Würsch, Roland Meier, Alain Mermoud, Julian Jang-Jaccard,
- Abstract summary: Multi-Agent Reinforcement Learning (MARL) has shown great potential as an adaptive solution for addressing modern cybersecurity challenges.<n>MARL enables decentralized, adaptive, and collaborative defense strategies and provides an automated mechanism to combat dynamic, coordinated, and sophisticated threats.
- Score: 2.180158274842657
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-Agent Reinforcement Learning (MARL) has shown great potential as an adaptive solution for addressing modern cybersecurity challenges. MARL enables decentralized, adaptive, and collaborative defense strategies and provides an automated mechanism to combat dynamic, coordinated, and sophisticated threats. This survey investigates the current state of research in MARL applications for automated cyber defense (ACD), focusing on intruder detection and lateral movement containment. Additionally, it examines the role of Autonomous Intelligent Cyber-defense Agents (AICA) and Cyber Gyms in training and validating MARL agents. Finally, the paper outlines existing challenges, such as scalability and adversarial robustness, and proposes future research directions. This also discusses how MARL integrates in AICA to provide adaptive, scalable, and dynamic solutions to counter the increasingly sophisticated landscape of cyber threats. It highlights the transformative potential of MARL in areas like intrusion detection and lateral movement containment, and underscores the value of Cyber Gyms for training and validation of AICA.
Related papers
- Exploring the Role of Large Language Models in Cybersecurity: A Systematic Survey [25.73174314007904]
Traditional cybersecurity approaches are struggling to adapt to the rapidly evolving nature of modern cyberattacks.<n>The emergence of Large Language Model (LLM) provides an innovative solution to cope with the increasingly severe cyber threats.<n> exploring how to effectively use LLM to defend against cyberattacks has become a hot topic in the current research field.
arXiv Detail & Related papers (2025-04-22T06:28:08Z) - Transforming Cyber Defense: Harnessing Agentic and Frontier AI for Proactive, Ethical Threat Intelligence [0.0]
This manuscript explores how the convergence of agentic AI and Frontier AI is transforming cybersecurity.<n>We examine the roles of real time monitoring, automated incident response, and perpetual learning in forging a resilient, dynamic defense ecosystem.<n>Our vision is to harmonize technological innovation with unwavering ethical oversight, ensuring that future AI driven security solutions uphold core human values of fairness, transparency, and accountability while effectively countering emerging cyber threats.
arXiv Detail & Related papers (2025-02-28T20:23:35Z) - A Survey of Model Extraction Attacks and Defenses in Distributed Computing Environments [55.60375624503877]
Model Extraction Attacks (MEAs) threaten modern machine learning systems by enabling adversaries to steal models, exposing intellectual property and training data.<n>This survey is motivated by the urgent need to understand how the unique characteristics of cloud, edge, and federated deployments shape attack vectors and defense requirements.<n>We systematically examine the evolution of attack methodologies and defense mechanisms across these environments, demonstrating how environmental factors influence security strategies in critical sectors such as autonomous vehicles, healthcare, and financial services.
arXiv Detail & Related papers (2025-02-22T03:46:50Z) - A Review of the Duality of Adversarial Learning in Network Intrusion: Attacks and Countermeasures [0.0]
Adversarial attacks, particularly those targeting vulnerabilities in deep learning models, present a nuanced and substantial threat to cybersecurity.<n>Our study delves into adversarial learning threats such as Data Poisoning, Test Time Evasion, and Reverse Engineering.<n>Our research lays the groundwork for strengthening defense mechanisms to address the potential breaches in network security and privacy posed by adversarial attacks.
arXiv Detail & Related papers (2024-12-18T14:21:46Z) - Countering Autonomous Cyber Threats [40.00865970939829]
Foundation Models present dual-use concerns broadly and within the cyber domain specifically.
Recent research has shown the potential for these advanced models to inform or independently execute offensive cyberspace operations.
This work evaluates several state-of-the-art FMs on their ability to compromise machines in an isolated network and investigates defensive mechanisms to defeat such AI-powered attacks.
arXiv Detail & Related papers (2024-10-23T22:46:44Z) - Multi-Agent Actor-Critics in Autonomous Cyber Defense [0.5261718469769447]
Multi-Agent Deep Reinforcement Learning (MADRL) presents a promising approach to enhancing the efficacy and resilience of autonomous cyber operations.
We demonstrate each agent is able to learn quickly and counter act on the threats autonomously using MADRL in simulated cyber-attack scenarios.
arXiv Detail & Related papers (2024-10-11T15:15:09Z) - Attack Atlas: A Practitioner's Perspective on Challenges and Pitfalls in Red Teaming GenAI [52.138044013005]
generative AI, particularly large language models (LLMs), become increasingly integrated into production applications.
New attack surfaces and vulnerabilities emerge and put a focus on adversarial threats in natural language and multi-modal systems.
Red-teaming has gained importance in proactively identifying weaknesses in these systems, while blue-teaming works to protect against such adversarial attacks.
This work aims to bridge the gap between academic insights and practical security measures for the protection of generative AI systems.
arXiv Detail & Related papers (2024-09-23T10:18:10Z) - The Malware as a Service ecosystem [5.973995274784383]
The study emphasises the profound challenges MaaS poses to traditional cybersecurity defences.
There is a call for a paradigm shift in defensive strategies, advocating for dynamic analysis, behavioural detection, and the integration of AI and machine learning techniques.
The ultimate goal is to aid in developing more effective strategies for combating the spread of commoditised malware threats.
arXiv Detail & Related papers (2024-05-07T08:25:12Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence (GAI) stands at the forefront of AI innovation, demonstrating rapid advancement and unparalleled proficiency in generating diverse content.
In this paper, we offer an extensive survey on the various applications of GAI in enhancing security within the physical layer of communication networks.
We delve into the roles of GAI in addressing challenges of physical layer security, focusing on communication confidentiality, authentication, availability, resilience, and integrity.
arXiv Detail & Related papers (2024-02-21T06:22:41Z) - Adaptive Attack Detection in Text Classification: Leveraging Space Exploration Features for Text Sentiment Classification [44.99833362998488]
Adversarial example detection plays a vital role in adaptive cyber defense, especially in the face of rapidly evolving attacks.
We propose a novel approach that leverages the power of BERT (Bidirectional Representations from Transformers) and introduces the concept of Space Exploration Features.
arXiv Detail & Related papers (2023-08-29T23:02:26Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
We study blackbox adversarial attacks on network classifiers.
We argue that attacker-defender fixed points are themselves general-sum games with complex phase transitions.
We show that a continual learning approach is required to study attacker-defender dynamics.
arXiv Detail & Related papers (2021-11-23T23:42:16Z) - Automating Privilege Escalation with Deep Reinforcement Learning [71.87228372303453]
In this work, we exemplify the potential threat of malicious actors using deep reinforcement learning to train automated agents.
We present an agent that uses a state-of-the-art reinforcement learning algorithm to perform local privilege escalation.
Our agent is usable for generating realistic attack sensor data for training and evaluating intrusion detection systems.
arXiv Detail & Related papers (2021-10-04T12:20:46Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
This paper summarizes the latest research on adversarial attacks against security solutions based on machine learning techniques.
It is the first to discuss the unique challenges of implementing end-to-end adversarial attacks in the cyber security domain.
arXiv Detail & Related papers (2020-07-05T18:22:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.