論文の概要: Deconstructing Obfuscation: A four-dimensional framework for evaluating Large Language Models assembly code deobfuscation capabilities
- arxiv url: http://arxiv.org/abs/2505.19887v1
- Date: Mon, 26 May 2025 12:16:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 16:58:43.407052
- Title: Deconstructing Obfuscation: A four-dimensional framework for evaluating Large Language Models assembly code deobfuscation capabilities
- Title(参考訳): 難読化の分解:大規模言語モデル評価のための4次元フレームワーク
- Authors: Anton Tkachenko, Dmitrij Suskevic, Benjamin Adolphi,
- Abstract要約: 大規模言語モデル (LLM) はソフトウェア工学において有望であるが、バイナリ解析の有効性は未定である。
組立コードの難読化のための商用LCMの総合評価を行った。
- 参考スコア(独自算出の注目度): 0.49157446832511503
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have shown promise in software engineering, yet their effectiveness for binary analysis remains unexplored. We present the first comprehensive evaluation of commercial LLMs for assembly code deobfuscation. Testing seven state-of-the-art models against four obfuscation scenarios (bogus control flow, instruction substitution, control flow flattening, and their combination), we found striking performance variations--from autonomous deobfuscation to complete failure. We propose a theoretical framework based on four dimensions: Reasoning Depth, Pattern Recognition, Noise Filtering, and Context Integration, explaining these variations. Our analysis identifies five error patterns: predicate misinterpretation, structural mapping errors, control flow misinterpretation, arithmetic transformation errors, and constant propagation errors, revealing fundamental limitations in LLM code processing.We establish a three-tier resistance model: bogus control flow (low resistance), control flow flattening (moderate resistance), and instruction substitution/combined techniques (high resistance). Universal failure against combined techniques demonstrates that sophisticated obfuscation remains effective against advanced LLMs. Our findings suggest a human-AI collaboration paradigm where LLMs reduce expertise barriers for certain reverse engineering tasks while requiring human guidance for complex deobfuscation. This work provides a foundation for evaluating emerging capabilities and developing resistant obfuscation techniques.x deobfuscation. This work provides a foundation for evaluating emerging capabilities and developing resistant obfuscation techniques.
- Abstract(参考訳): 大規模言語モデル (LLM) はソフトウェア工学において有望であるが、バイナリ解析の有効性は未定である。
組立コードの難読化のための商用LCMの総合評価を行った。
4つの難読化シナリオ(ボグスコントロールフロー、命令置換、制御フローフラット化、およびそれらの組み合わせ)に対して、7つの最先端モデルをテストした結果、自律的難読化から完全な失敗に至るまで、顕著なパフォーマンスのバリエーションが判明した。
本稿では,4次元の推論,パターン認識,ノイズフィルタリング,コンテキスト統合という理論的枠組みを提案する。
解析では, 予測誤解釈, 構造的マッピング誤差, 制御フロー誤解釈, 算術変換誤差, 定数伝播誤差, LLM符号処理の基本的制約を明らかにするとともに, ボグス制御フロー(低抵抗), 制御フロー平坦化(モデレート抵抗), 命令置換/組込み技術(高抵抗)の3階層抵抗モデルを構築した。
複合手法に対する普遍的失敗は、高度な難読化が高度なLCMに対して有効であることを示す。
以上の結果から,LLMは複雑な難読化のための人的指導を必要としながら,特定のリバースエンジニアリングタスクの専門的障壁を低減させる,人間とAIの協調パラダイムが示唆された。
この研究は、新興能力を評価し、耐障害性のある難読化技術を開発するための基盤を提供する。
この研究は、新興能力を評価し、耐障害性のある難読化技術を開発するための基盤を提供する。
関連論文リスト
- Helping Large Language Models Protect Themselves: An Enhanced Filtering and Summarization System [2.0257616108612373]
大規模言語モデルは、敵の攻撃、操作プロンプト、悪意のある入力のエンコードに弱い。
本研究は,LSMが敵対的あるいは悪意的な入力を自力で認識し,フィルタリングし,防御することのできる,ユニークな防御パラダイムを提案する。
論文 参考訳(メタデータ) (2025-05-02T14:42:26Z) - The Code Barrier: What LLMs Actually Understand? [7.407441962359689]
本研究では,言語モデルの意味理解能力を評価するために,コード難読化を構造化テストフレームワークとして利用する。
難読化の複雑さが増加するにつれて、統計的に顕著な性能低下が見られる。
本研究では,言語モデルにおけるコード理解を評価するための新しい評価手法を提案する。
論文 参考訳(メタデータ) (2025-04-14T14:11:26Z) - ObscuraCoder: Powering Efficient Code LM Pre-Training Via Obfuscation Grounding [60.37988508851391]
言語モデル(LM)は、コード記述ツールボックスのベースとなっている。
Code-LMの事前学習目標の変更を探求する研究は、データ効率の向上と構文とセマンティクスの相互接続性の向上を目的としており、顕著に不十分である。
本研究では,Code-LMが表面的な構文を超越し,事前学習したサンプルの効率を高めるために,難読化コードの基盤について検討する。
論文 参考訳(メタデータ) (2025-03-27T23:08:53Z) - What You See Is Not Always What You Get: An Empirical Study of Code Comprehension by Large Language Models [0.5735035463793009]
ソースコードに隠された文字操作がLLMの動作を誤認し,人間のレビュアーには検出不能なままにしておくという,大きな言語モデル(LLM)の攻撃に対する脆弱性について検討する。
これらの攻撃には、コードリオーダー、見えないコーディング文字、コード削除、コードホモグリフが含まれる。
以上の結果より,LLMは摂動の大きさと性能に異なる負の相関性を示す一方,LLMは認識不能なコードキャラクタ攻撃に対する感受性を示すことが明らかとなった。
論文 参考訳(メタデータ) (2024-12-11T04:52:41Z) - Compromising Embodied Agents with Contextual Backdoor Attacks [69.71630408822767]
大型言語モデル(LLM)は、エンボディドインテリジェンスの発展に変化をもたらした。
本稿では,このプロセスにおけるバックドアセキュリティの重大な脅威を明らかにする。
ほんの少しの文脈的デモンストレーションを毒殺しただけで、攻撃者はブラックボックスLDMの文脈的環境を隠蔽することができる。
論文 参考訳(メタデータ) (2024-08-06T01:20:12Z) - SORRY-Bench: Systematically Evaluating Large Language Model Safety Refusal [64.9938658716425]
SORRY-Benchは、安全でないユーザ要求を認識し拒否する大規模言語モデル(LLM)能力を評価するためのベンチマークである。
まず、既存の手法では、安全でないトピックの粗い分類を使い、いくつかのきめ細かいトピックを過剰に表現している。
第二に、プロンプトの言語的特徴とフォーマッティングは、様々な言語、方言など、多くの評価において暗黙的にのみ考慮されているように、しばしば見過ごされる。
論文 参考訳(メタデータ) (2024-06-20T17:56:07Z) - Transfer Attacks and Defenses for Large Language Models on Coding Tasks [30.065641782962974]
大規模言語モデル(LLM)を用いた符号化作業における対向的摂動の影響について検討する。
本稿では,逆方向の摂動を逆転させるために,逆方向の摂動コードや明示的な指示の例を含むようにプロンプトを変更するプロンプトベースの防御手法を提案する。
実験の結果、より小さなコードモデルで得られた逆例は確かに転送可能であり、LLMの性能は低下していることがわかった。
論文 参考訳(メタデータ) (2023-11-22T15:11:35Z) - Contrastive Decoding Improves Reasoning in Large Language Models [55.16503283583076]
コントラストデコーディングは,様々な推論タスクにおいて,グリージーデコーディングよりもアウト・オブ・ボックスの大幅な改善を実現することを示す。
本稿では,LLaMA-65BがHellaSwag Commonsense reasoning benchmark上でLLaMA 2, GPT-3.5, PaLM 2-Lより優れていることを示す。
論文 参考訳(メタデータ) (2023-09-17T00:29:32Z) - Red Teaming Language Model Detectors with Language Models [114.36392560711022]
大規模言語モデル(LLM)は、悪意のあるユーザによって悪用された場合、重大な安全性と倫理的リスクをもたらす。
近年,LLM生成テキストを検出し,LLMを保護するアルゴリズムが提案されている。
1) LLMの出力中の特定の単語を, 文脈が与えられたシノニムに置き換えること, 2) 生成者の書き方を変更するための指示プロンプトを自動で検索すること,である。
論文 参考訳(メタデータ) (2023-05-31T10:08:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。