APE: Selective Fine-tuning with Acceptance Criteria for Language Model Adaptation
- URL: http://arxiv.org/abs/2505.19912v2
- Date: Mon, 09 Jun 2025 10:21:49 GMT
- Title: APE: Selective Fine-tuning with Acceptance Criteria for Language Model Adaptation
- Authors: Javier MarĂn,
- Abstract summary: APE implements a filtered selection process that prevents destabilizing parameter changes while enabling systematic improvement.<n>Our method achieves 33.9% BLEU improvement and 36.2% perplexity reduction on news summarization tasks.
- Score: 0.5439020425819
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present Adjacent Possible Exploration (APE), a selective fine-tuning method for adapting large language models that systematically explores parameter modifications while maintaining model stability. Inspired by evolutionary optimization principles, APE evaluates multiple candidate parameter updates through fine-tuning on small data subsets and accepts only those exceeding a performance threshold. Unlike standard fine-tuning that follows single gradient directions, APE implements a filtered selection process that prevents destabilizing parameter changes while enabling systematic improvement. Our method achieves 33.9\% BLEU improvement and 36.2\% perplexity reduction on news summarization tasks while using minimal computational resources. The approach provides a practical framework for controlled model adaptation that balances performance gains with representational stability.
Related papers
- FisherSFT: Data-Efficient Supervised Fine-Tuning of Language Models Using Information Gain [14.109309236798518]
Supervised fine-tuning (SFT) is a standard approach to adapting large language models (LLMs) to new domains.<n>In this work, we improve the statistical efficiency of SFT by selecting an informative subset of training examples.
arXiv Detail & Related papers (2025-05-20T18:41:34Z) - Unsupervised Parameter Efficient Source-free Post-pretraining [52.27955794126508]
We introduce UpStep, an Unsupervised.<n>Source-free post-pretraining approach to adapt a base model from a source domain to a target domain.<n>We use various general backbone architectures, both supervised and unsupervised, trained on Imagenet as our base model.
arXiv Detail & Related papers (2025-02-28T18:54:51Z) - Reinforcement Learning for Long-Horizon Interactive LLM Agents [56.9860859585028]
Interactive digital agents (IDAs) leverage APIs of stateful digital environments to perform tasks in response to user requests.<n>We present a reinforcement learning (RL) approach that trains IDAs directly in their target environments.<n>We derive LOOP, a data- and memory-efficient variant of proximal policy optimization.
arXiv Detail & Related papers (2025-02-03T18:35:42Z) - Adaptive Data Exploitation in Deep Reinforcement Learning [50.53705050673944]
We introduce ADEPT, a powerful framework to enhance the **data efficiency** and **generalization** in deep reinforcement learning (RL)<n>Specifically, ADEPT adaptively manages the use of sampled data across different learning stages via multi-armed bandit (MAB) algorithms.<n>We test ADEPT on benchmarks including Procgen, MiniGrid, and PyBullet.
arXiv Detail & Related papers (2025-01-22T04:01:17Z) - ALoRE: Efficient Visual Adaptation via Aggregating Low Rank Experts [71.91042186338163]
ALoRE is a novel PETL method that reuses the hypercomplex parameterized space constructed by Kronecker product to Aggregate Low Rank Experts.<n>Thanks to the artful design, ALoRE maintains negligible extra parameters and can be effortlessly merged into the frozen backbone.
arXiv Detail & Related papers (2024-12-11T12:31:30Z) - Dynamic Subset Tuning: Expanding the Operational Range of Parameter-Efficient Training for Large Language Models [14.762222323897978]
We propose a novel parameter-efficient training (PET) method for large language models.
Unlike prior methods, this subset is not fixed in location but rather which parameters are modified over the course of training.
Our method enables a seamless scaling of the subset size across an arbitrary proportion of the total model size.
arXiv Detail & Related papers (2024-11-13T13:53:10Z) - Efficient Source-Free Time-Series Adaptation via Parameter Subspace Disentanglement [0.7558576228782637]
We propose a framework for efficient Source-Free Domain Adaptation (SFDA)<n>Our approach introduces an improved paradigm for source-model preparation and target-side adaptation.<n>We demonstrate that our framework is compatible with various SFDA methods and achieves significant computational efficiency.
arXiv Detail & Related papers (2024-10-03T02:12:03Z) - SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank Adaptation [52.6922833948127]
In this work, we investigate the importance of parameters in pre-trained diffusion models.<n>We propose a novel model fine-tuning method to make full use of these ineffective parameters.<n>Our method enhances the generative capabilities of pre-trained models in downstream applications.
arXiv Detail & Related papers (2024-09-10T16:44:47Z) - AvaTaR: Optimizing LLM Agents for Tool Usage via Contrastive Reasoning [93.96463520716759]
Large language model (LLM) agents have demonstrated impressive capabilities in utilizing external tools and knowledge to boost accuracy and hallucinations.
Here, we introduce AvaTaR, a novel and automated framework that optimize an LLM agent to effectively leverage provided tools, improving performance on a given task.
arXiv Detail & Related papers (2024-06-17T04:20:02Z) - Adaptive Preference Scaling for Reinforcement Learning with Human Feedback [103.36048042664768]
Reinforcement learning from human feedback (RLHF) is a prevalent approach to align AI systems with human values.
We propose a novel adaptive preference loss, underpinned by distributionally robust optimization (DRO)
Our method is versatile and can be readily adapted to various preference optimization frameworks.
arXiv Detail & Related papers (2024-06-04T20:33:22Z) - Parameter-Efficient Fine-Tuning With Adapters [5.948206235442328]
This research introduces a novel adaptation method utilizing the UniPELT framework as a base.
Our method employs adapters, which enable efficient transfer of pretrained models to new tasks with minimal retraining of the base model parameters.
arXiv Detail & Related papers (2024-05-09T01:40:38Z) - Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning [55.96599486604344]
We introduce an approach aimed at enhancing the reasoning capabilities of Large Language Models (LLMs) through an iterative preference learning process.
We use Monte Carlo Tree Search (MCTS) to iteratively collect preference data, utilizing its look-ahead ability to break down instance-level rewards into more granular step-level signals.
The proposed algorithm employs Direct Preference Optimization (DPO) to update the LLM policy using this newly generated step-level preference data.
arXiv Detail & Related papers (2024-05-01T11:10:24Z) - Fast Fishing: Approximating BAIT for Efficient and Scalable Deep Active Image Classification [1.8567173419246403]
Deep active learning (AL) seeks to minimize the annotation costs for training deep neural networks.
BAIT, a recently proposed AL strategy based on the Fisher Information, has demonstrated impressive performance across various datasets.
This paper introduces two methods to enhance BAIT's computational efficiency and scalability.
arXiv Detail & Related papers (2024-04-13T12:09:37Z) - Fine-Grained Stateful Knowledge Exploration: A Novel Paradigm for Integrating Knowledge Graphs with Large Language Models [19.049828741139425]
Large Language Models (LLMs) have shown impressive capabilities, yet updating their knowledge remains a significant challenge.<n>Most existing methods use a paradigm that treats the question as the objective, with relevant knowledge being incrementally retrieved from the knowledge graph.<n>We propose a novel paradigm of fine-grained stateful knowledge exploration, which addresses the information granularity mismatch' issue.
arXiv Detail & Related papers (2024-01-24T13:36:50Z) - LLMaAA: Making Large Language Models as Active Annotators [32.57011151031332]
We propose LLMaAA, which takes large language models as annotators and puts them into an active learning loop to determine what to annotate efficiently.
We conduct experiments and analysis on two classic NLP tasks, named entity recognition and relation extraction.
With LLMaAA, task-specific models trained from LLM-generated labels can outperform the teacher within only hundreds of annotated examples.
arXiv Detail & Related papers (2023-10-30T14:54:15Z) - On the Effectiveness of Parameter-Efficient Fine-Tuning [79.6302606855302]
Currently, many research works propose to only fine-tune a small portion of the parameters while keeping most of the parameters shared across different tasks.
We show that all of the methods are actually sparse fine-tuned models and conduct a novel theoretical analysis of them.
Despite the effectiveness of sparsity grounded by our theory, it still remains an open problem of how to choose the tunable parameters.
arXiv Detail & Related papers (2022-11-28T17:41:48Z) - On Enforcing Better Conditioned Meta-Learning for Rapid Few-Shot
Adaptation [31.471917430653626]
We demonstrate that recasting the optimization problem to a non-linear least-squares formulation provides a principled way to enforce a $textitwell-conditioned$ parameter space for meta-learning models.
Our evaluations show that the proposed method significantly outperforms its unconstrained counterpart especially during initial adaptation steps.
arXiv Detail & Related papers (2022-06-15T02:44:45Z) - Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than
In-Context Learning [81.3514358542452]
Few-shot in-context learning (ICL) incurs substantial computational, memory, and storage costs because it involves processing all of the training examples every time a prediction is made.
parameter-efficient fine-tuning offers an alternative paradigm where a small set of parameters are trained to enable a model to perform the new task.
In this paper, we rigorously compare few-shot ICL and parameter-efficient fine-tuning and demonstrate that the latter offers better accuracy as well as dramatically lower computational costs.
arXiv Detail & Related papers (2022-05-11T17:10:41Z) - Delta Tuning: A Comprehensive Study of Parameter Efficient Methods for
Pre-trained Language Models [90.24999406296867]
In contrast with the standard fine-tuning, delta tuning only fine-tunes a small portion of the model parameters while keeping the rest untouched.
Recent studies have demonstrated that a series of delta tuning methods with distinct tuned parameter selection could achieve performance on a par with full- parameter fine-tuning.
arXiv Detail & Related papers (2022-03-14T07:56:32Z) - Improving Hyperparameter Optimization by Planning Ahead [3.8673630752805432]
We propose a novel transfer learning approach, defined within the context of model-based reinforcement learning.
We propose a new variant of model predictive control which employs a simple look-ahead strategy as a policy.
Our experiments on three meta-datasets comparing to state-of-the-art HPO algorithms show that the proposed method can outperform all baselines.
arXiv Detail & Related papers (2021-10-15T11:46:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.