論文の概要: Optimizing edge AI models on HPC systems with the edge in the loop
- arxiv url: http://arxiv.org/abs/2505.19995v1
- Date: Mon, 26 May 2025 13:47:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 16:58:43.478091
- Title: Optimizing edge AI models on HPC systems with the edge in the loop
- Title(参考訳): エッジがループ内にあるHPCシステム上でのエッジAIモデルの最適化
- Authors: Marcel Aach, Cyril Blanc, Andreas Lintermann, Kurt De Grave,
- Abstract要約: エッジデバイスにデプロイされるAIと機械学習モデルは、サイズが小さいことが多い。
これは、最適化された構成を見つけるために、アーキテクチャ空間を体系的に探索するアプローチである。
本研究では,ベルギーのエッジデバイスとドイツの高性能コンピューティングシステムを組み合わせたハードウェア対応NASワークフローを提案する。
この手法は、オープンなRAISE-LPBFデータセットに基づいてAMドメインのユースケースで検証され、モデル品質を1.35倍に高めながら8.8倍高速な推論速度を実現する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial intelligence and machine learning models deployed on edge devices, e.g., for quality control in Additive Manufacturing (AM), are frequently small in size. Such models usually have to deliver highly accurate results within a short time frame. Methods that are commonly employed in literature start out with larger trained models and try to reduce their memory and latency footprint by structural pruning, knowledge distillation, or quantization. It is, however, also possible to leverage hardware-aware Neural Architecture Search (NAS), an approach that seeks to systematically explore the architecture space to find optimized configurations. In this study, a hardware-aware NAS workflow is introduced that couples an edge device located in Belgium with a powerful High-Performance Computing system in Germany, to train possible architecture candidates as fast as possible while performing real-time latency measurements on the target hardware. The approach is verified on a use case in the AM domain, based on the open RAISE-LPBF dataset, achieving ~8.8 times faster inference speed while simultaneously enhancing model quality by a factor of ~1.35, compared to a human-designed baseline.
- Abstract(参考訳): アダプティブマニュファクチャリング(AM)の品質管理のためにエッジデバイスにデプロイされる人工知能と機械学習モデルは、しばしば小型である。
このようなモデルは通常、短いフレーム内で非常に正確な結果を提供する必要があります。
文献で一般的に使われている方法は、より大きな訓練されたモデルから始まり、構造的な刈り込み、知識の蒸留、量子化によって、メモリとレイテンシのフットプリントを減らそうとする。
しかし、最適化された構成を見つけるために、アーキテクチャ空間を体系的に探索するアプローチである、ハードウェア対応のNeural Architecture Search(NAS)を利用することもできる。
本研究では,ベルギーのエッジデバイスとドイツの強力なハイパフォーマンスコンピューティングシステムを組み合わせたハードウェア対応NASワークフローを導入し,ターゲットハードウェア上でリアルタイム遅延測定を行いながら,可能な限り早くアーキテクチャ候補をトレーニングする。
このアプローチは、オープンなRAISE-LPBFデータセットに基づいてAMドメインのユースケースで検証され、人間の設計したベースラインに比べてモデル品質を約1.35倍に向上させながら、推論速度を約8.8倍高速化する。
関連論文リスト
- ZeroLM: Data-Free Transformer Architecture Search for Language Models [54.83882149157548]
現在の自動プロキシ発見アプローチは、検索時間の拡張、データの過度なオーバーフィットへの感受性、構造的な複雑さに悩まされている。
本稿では,効率的な重み統計によるモデルキャパシティの定量化を目的とした,新しいゼロコストプロキシ手法を提案する。
本評価は,FlexiBERT ベンチマークで Spearman's rho 0.76 と Kendall's tau 0.53 を達成し,このアプローチの優位性を示すものである。
論文 参考訳(メタデータ) (2025-03-24T13:11:22Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Search-time Efficient Device Constraints-Aware Neural Architecture
Search [6.527454079441765]
コンピュータビジョンや自然言語処理といったディープラーニング技術は、計算コストが高く、メモリ集約的です。
ニューラルアーキテクチャサーチ(NAS)によるデバイス制約に最適化されたタスク固有のディープラーニングアーキテクチャの構築を自動化する。
本稿では,エッジデバイス制約を組み込んだ高速ニューラルネットワークアーキテクチャ探索の原理的手法であるDCA-NASを提案する。
論文 参考訳(メタデータ) (2023-07-10T09:52:28Z) - POPNASv3: a Pareto-Optimal Neural Architecture Search Solution for Image
and Time Series Classification [8.190723030003804]
本稿では、異なるハードウェア環境と複数の分類タスクを対象とした逐次モデルベースNASアルゴリズムの第3版について述べる。
提案手法は,異なるタスクに適応するフレキシブルな構造とデータ処理パイプラインを維持しながら,大規模な検索空間内で競合するアーキテクチャを見つけることができる。
画像と時系列の分類データセットで実施された実験は、POPNASv3が多種多様な演算子を探索し、異なるシナリオで提供されるデータの種類に適した最適なアーキテクチャに収束できることを示す。
論文 参考訳(メタデータ) (2022-12-13T17:14:14Z) - FreeREA: Training-Free Evolution-based Architecture Search [17.202375422110553]
FreeREAは、トレーニングなしメトリクスの最適化組み合わせを利用してアーキテクチャをランク付けする、独自のセルベースの進化NASアルゴリズムである。
本実験はNAS-Bench-101とNATS-Benchの共通ベンチマークを用いて,フリーレアがモデル自動設計のための高速で効率的かつ効果的な探索手法であることを実証した。
論文 参考訳(メタデータ) (2022-06-17T11:16:28Z) - MAPLE-X: Latency Prediction with Explicit Microprocessor Prior Knowledge [87.41163540910854]
ディープニューラルネットワーク(DNN)レイテンシのキャラクタリゼーションは、時間を要するプロセスである。
ハードウェアデバイスの事前知識とDNNアーキテクチャのレイテンシを具体化し,MAPLEを拡張したMAPLE-Xを提案する。
論文 参考訳(メタデータ) (2022-05-25T11:08:20Z) - Real-time Neural-MPC: Deep Learning Model Predictive Control for
Quadrotors and Agile Robotic Platforms [59.03426963238452]
モデル予測制御パイプライン内の動的モデルとして,大規模で複雑なニューラルネットワークアーキテクチャを効率的に統合するフレームワークであるReal-time Neural MPCを提案する。
ニューラルネットワークを使わずに、最先端のMPCアプローチと比較して、位置追跡誤差を最大82%削減することで、実世界の問題に対する我々のフレームワークの実現可能性を示す。
論文 参考訳(メタデータ) (2022-03-15T09:38:15Z) - ISyNet: Convolutional Neural Networks design for AI accelerator [0.0]
現在の最先端アーキテクチャは、モデル複雑さを考慮して、ニューラルアーキテクチャサーチ(NAS)によって発見されている。
本稿では,ニューラルネットワーク探索空間のハードウェア効率の指標として,行列効率測定(MEM),ハードウェア効率の高い演算からなる探索空間,レイテンシを考慮したスケーリング手法を提案する。
我々は、ImageNet上のNPUデバイスの設計アーキテクチャと、下流の分類および検出タスクの一般化能力の利点を示す。
論文 参考訳(メタデータ) (2021-09-04T20:57:05Z) - Does Form Follow Function? An Empirical Exploration of the Impact of
Deep Neural Network Architecture Design on Hardware-Specific Acceleration [76.35307867016336]
本研究では,深層ニューラルネットワーク設計が推論速度向上の程度に与える影響について検討する。
ハードウェア固有のアクセラレーションを活用することで平均推論速度が380%向上する一方で、マクロアーキテクチャ設計パターンによって推論速度が大幅に変化することを示した。
論文 参考訳(メタデータ) (2021-07-08T23:05:39Z) - MS-RANAS: Multi-Scale Resource-Aware Neural Architecture Search [94.80212602202518]
我々は,MS-RANAS(Multi-Scale Resource-Aware Neural Architecture Search)を提案する。
我々は,検索コストの削減を図るために,ワンショットのアーキテクチャ探索手法を採用した。
我々は精度-速度トレードオフの観点から最先端の結果を得る。
論文 参考訳(メタデータ) (2020-09-29T11:56:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。