Efficient Optimization Accelerator Framework for Multistate Ising Problems
- URL: http://arxiv.org/abs/2505.20250v1
- Date: Mon, 26 May 2025 17:23:47 GMT
- Title: Efficient Optimization Accelerator Framework for Multistate Ising Problems
- Authors: Chirag Garg, Sayeef Salahuddin,
- Abstract summary: Ising machines are a prominent class of hardware architectures that aim to solve NP-hard optimization problems.<n>We model the spin interactions as a generalized logic function to significantly reduce the exploration space.<n>We also design a 1024-neuron all-to-all connected probabilistic Ising accelerator that shows up to 10000x performance acceleration.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Ising Machines are a prominent class of hardware architectures that aim to solve NP-hard combinatorial optimization problems. These machines consist of a network of interacting binary spins/neurons that evolve to represent the optimum ground state energy solution. Generally, combinatorial problems are transformed into quadratic unconstrained binary optimization (QUBO) form to harness the computational efficiency of these Ising machines. However, this transformation, especially for multi-state problems, often leads to a more complex exploration landscape than the original problem, thus severely impacting the solution quality. To address this challenge, we model the spin interactions as a generalized boolean logic function to significantly reduce the exploration space. We benchmark the graph coloring problem from the class of multi-state NP-hard optimization using probabilistic Ising solvers to illustrate the effectiveness of our framework. The proposed methodology achieves similar accuracy compared to state-of-the-art heuristics and machine learning algorithms, and demonstrates significant improvement over the existing Ising methods. Additionally, we demonstrate that combining parallel tempering with our existing framework further reduces the coloring error by up to 50% compared to the conventionally used Gibbs sampling algorithm. We also design a 1024-neuron all-to-all connected probabilistic Ising accelerator that shows up to 10000x performance acceleration compared to heuristics while reducing the number of required physical neurons by 1.5-4x compared to conventional Ising machines. Indeed, this accelerator solution demonstrates improvement across all metrics over the current methods, i.e., energy, performance, area, and solution quality. Thus, this work expands the potential of existing Ising hardware to solve a broad class of these multistate optimization problems.
Related papers
- Direct comparison of stochastic driven nonlinear dynamical systems for combinatorial optimization [0.0]
Combinatorial optimization problems are ubiquitous in industrial applications.<n>Tremendous effort has been devoted to developing solvers for Ising-type problems over the past decades.<n>Recent advances in controlling and manipulating both quantum and classical systems have enabled novel computing paradigms.
arXiv Detail & Related papers (2025-03-19T17:08:55Z) - A Deep Unrolling Model with Hybrid Optimization Structure for Hyperspectral Image Deconvolution [50.13564338607482]
We propose a novel optimization framework for the hyperspectral deconvolution problem, called DeepMix.<n>It consists of three distinct modules, namely, a data consistency module, a module that enforces the effect of the handcrafted regularizers, and a denoising module.<n>This work proposes a context aware denoising module designed to sustain the advancements achieved by the cooperative efforts of the other modules.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Symmetric Tensor Networks for Generative Modeling and Constrained
Combinatorial Optimization [72.41480594026815]
Constrained optimization problems abound in industry, from portfolio optimization to logistics.
One of the major roadblocks in solving these problems is the presence of non-trivial hard constraints which limit the valid search space.
In this work, we encode arbitrary integer-valued equality constraints of the form Ax=b, directly into U(1) symmetric networks (TNs) and leverage their applicability as quantum-inspired generative models.
arXiv Detail & Related papers (2022-11-16T18:59:54Z) - Learning to Solve Combinatorial Graph Partitioning Problems via
Efficient Exploration [72.15369769265398]
Experimentally, ECORD achieves a new SOTA for RL algorithms on the Maximum Cut problem.
Compared to the nearest competitor, ECORD reduces the optimality gap by up to 73%.
arXiv Detail & Related papers (2022-05-27T17:13:10Z) - Joint inference and input optimization in equilibrium networks [68.63726855991052]
deep equilibrium model is a class of models that foregoes traditional network depth and instead computes the output of a network by finding the fixed point of a single nonlinear layer.
We show that there is a natural synergy between these two settings.
We demonstrate this strategy on various tasks such as training generative models while optimizing over latent codes, training models for inverse problems like denoising and inpainting, adversarial training and gradient based meta-learning.
arXiv Detail & Related papers (2021-11-25T19:59:33Z) - Transformer-based Machine Learning for Fast SAT Solvers and Logic
Synthesis [63.53283025435107]
CNF-based SAT and MaxSAT solvers are central to logic synthesis and verification systems.
In this work, we propose a one-shot model derived from the Transformer architecture to solve the MaxSAT problem.
arXiv Detail & Related papers (2021-07-15T04:47:35Z) - Combinatorial Optimization with Physics-Inspired Graph Neural Networks [0.0]
We show how graph neural networks can be used to solve optimization problems.
We find that the neural network performs on par or outperforms existing solvers.
arXiv Detail & Related papers (2021-07-02T16:54:35Z) - Machine Learning Framework for Quantum Sampling of Highly-Constrained,
Continuous Optimization Problems [101.18253437732933]
We develop a generic, machine learning-based framework for mapping continuous-space inverse design problems into surrogate unconstrained binary optimization problems.
We showcase the framework's performance on two inverse design problems by optimizing thermal emitter topologies for thermophotovoltaic applications and (ii) diffractive meta-gratings for highly efficient beam steering.
arXiv Detail & Related papers (2021-05-06T02:22:23Z) - Computational Overhead of Locality Reduction in Binary Optimization
Problems [0.0]
We discuss the effects of locality reduction needed for the majority of solvers that can only accommodate 2-local (quadratic) cost functions.
Using a parallel tempering Monte Carlo solver on Microsoft Azure Quantum, we show that post reduction to a corresponding 2-local representation the problems become considerably harder to solve.
arXiv Detail & Related papers (2020-12-17T15:49:55Z) - A Hybrid Framework Using a QUBO Solver For Permutation-Based
Combinatorial Optimization [5.460573052311485]
We propose a hybrid framework to solve large-scale permutation-based problems using a high-performance quadratic unconstrained binary optimization solver.
We propose techniques to overcome the challenges in using a QUBO solver that typically comes with limited numbers of bits.
arXiv Detail & Related papers (2020-09-27T07:15:25Z) - TIGER: Topology-aware Assignment using Ising machines Application to
Classical Algorithm Tasks and Quantum Circuit Gates [2.4047296366832307]
A mapping problem exists in gate-based quantum computing where the objective is to map tasks to gates in a topology fashion.
Existing task approaches are either or based on physical optimization algorithms, providing different speed and solution quality trade-offs.
We propose an algorithm that allows solving the topology-aware assignment problem using Ising machines.
arXiv Detail & Related papers (2020-09-21T19:46:59Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.