論文の概要: In-context Language Learning for Endangered Languages in Speech Recognition
- arxiv url: http://arxiv.org/abs/2505.20445v2
- Date: Wed, 28 May 2025 07:11:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-29 12:33:41.757686
- Title: In-context Language Learning for Endangered Languages in Speech Recognition
- Title(参考訳): 音声認識における絶滅危惧言語のための文脈内言語学習
- Authors: Zhaolin Li, Jan Niehues,
- Abstract要約: In-context Learning (ICL) を用いて,大規模言語モデル (LLM) が未知の低リソース言語を学習できるかどうかを検討する。
ICLは、これらの言語に特化して訓練された専用言語モデルに匹敵する、あるいは超越したASR性能を実現することができることを示す。
- 参考スコア(独自算出の注目度): 15.294500162002345
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With approximately 7,000 languages spoken worldwide, current large language models (LLMs) support only a small subset. Prior research indicates LLMs can learn new languages for certain tasks without supervised data. We extend this investigation to speech recognition, investigating whether LLMs can learn unseen, low-resource languages through in-context learning (ICL). With experiments on four diverse endangered languages that LLMs have not been trained on, we find that providing more relevant text samples enhances performance in both language modelling and Automatic Speech Recognition (ASR) tasks. Furthermore, we show that the probability-based approach outperforms the traditional instruction-based approach in language learning. Lastly, we show ICL enables LLMs to achieve ASR performance that is comparable to or even surpasses dedicated language models trained specifically for these languages, while preserving the original capabilities of the LLMs.
- Abstract(参考訳): 世界中で約7,000の言語が話されているため、現在の大規模言語モデル(LLM)は小さなサブセットしかサポートしていない。
以前の研究では、LLMは教師付きデータなしで特定のタスクのために新しい言語を学習できることを示している。
本研究では,LLMがテキスト内学習(ICL)によって,未知の低リソース言語を学習できるかどうかを,音声認識に拡張する。
LLMが訓練していない4つの多様な絶滅危惧言語に対する実験により、より関連性の高いテキストサンプルを提供することで、言語モデリングと自動音声認識(ASR)タスクのパフォーマンスが向上することがわかった。
さらに,確率に基づくアプローチは,従来の言語学習における指導に基づくアプローチよりも優れていることを示す。
最後に、ICLにより、LLMの本来の能力を保ちながら、これらの言語に特化して訓練された専用言語モデルに匹敵する、あるいは超越したASR性能を実現することができることを示す。
関連論文リスト
- Think Carefully and Check Again! Meta-Generation Unlocking LLMs for Low-Resource Cross-Lingual Summarization [108.6908427615402]
CLS(Cross-lingual summarization)は、異なるターゲット言語でソーステキストの要約を生成することを目的としている。
現在、インストラクションチューニング付き大規模言語モデル (LLM) は様々な英語タスクで優れている。
近年の研究では、LCSタスクにおけるLCMの性能は、わずかな設定でも満足できないことが示されている。
論文 参考訳(メタデータ) (2024-10-26T00:39:44Z) - MindMerger: Efficient Boosting LLM Reasoning in non-English Languages [26.334092384176518]
推論能力は大規模言語モデル(LLM)にとって不可欠である
我々は,多言語モデルからLLMと外部言語理解機能を融合したMindMergerを提案する。
MindMergerは、特に低リソース言語において、すべてのベースラインを一貫して上回る。
論文 参考訳(メタデータ) (2024-05-27T17:41:54Z) - Teaching a Multilingual Large Language Model to Understand Multilingual Speech via Multi-Instructional Training [29.47243668154796]
BLOOMZMMSは多言語LLMと多言語音声エンコーダを統合する新しいモデルである。
本稿では,言語知識のテキストから音声モダリティへの伝達性を示す。
ゼロショット評価の結果は、複数のタスクにまたがるアプローチの堅牢性を確認します。
論文 参考訳(メタデータ) (2024-04-16T21:45:59Z) - Language-Specific Neurons: The Key to Multilingual Capabilities in Large Language Models [117.20416338476856]
大規模言語モデル(LLM)は、特別にキュレートされた多言語並列コーパスで事前訓練されることなく、顕著な多言語機能を示す。
LLM内の言語特異的ニューロンを識別するための新しい検出手法である言語アクティベーション確率エントロピー(LAPE)を提案する。
以上の結果から,LLMが特定の言語を処理できる能力は,神経細胞のサブセットが少なすぎるためであることが示唆された。
論文 参考訳(メタデータ) (2024-02-26T09:36:05Z) - Enhancing Multilingual Capabilities of Large Language Models through
Self-Distillation from Resource-Rich Languages [60.162717568496355]
大規模言語モデル(LLM)は多言語コーパスで事前訓練されている。
彼らのパフォーマンスは、いくつかのリソース豊富な言語と比較して、ほとんどの言語でまだ遅れています。
論文 参考訳(メタデータ) (2024-02-19T15:07:32Z) - Establishing Vocabulary Tests as a Benchmark for Evaluating Large
Language Models [2.7013338932521416]
我々は,大言語モデル(LLM)の性能を評価する貴重なツールとして,語彙テストの復活を提唱する。
2つの言語にまたがる2つの語彙テスト形式を用いて7つのLSMを評価し,その語彙的知識の驚くべきギャップを明らかにする。
論文 参考訳(メタデータ) (2023-10-23T08:45:12Z) - Democratizing LLMs for Low-Resource Languages by Leveraging their English Dominant Abilities with Linguistically-Diverse Prompts [75.33019401706188]
大規模言語モデル(LLM)は、少数の例を単純に観察することで、効果的にタスクを実行することが知られている。
我々は,LLMが任意の言語から英語に翻訳するよう促すために,多種多様な高ソース言語から合成例を組み立てることを提案する。
我々の教師なしプロンプト法は、英語と13のIndic言語と21のアフリカ低リソース言語間の翻訳において、異なる大きさのLLMにおける教師付き少ショット学習と同等に機能する。
論文 参考訳(メタデータ) (2023-06-20T08:27:47Z) - Don't Trust ChatGPT when Your Question is not in English: A Study of
Multilingual Abilities and Types of LLMs [16.770697902481107]
大規模言語モデル(LLM)は、例外的な自然言語理解能力を示している。
本論文では,多言語環境下でのLLMの性能格差を体系的に評価する方法を提案する。
その結果,GPTは多言語設定において高い翻訳的振る舞いを示すことがわかった。
論文 参考訳(メタデータ) (2023-05-24T02:05:03Z) - A Primer on Pretrained Multilingual Language Models [18.943173499882885]
MLLM(Multilingual Language Models)は、多数の言語に事前学習の能力をもたらすための実行可能な選択肢として登場した。
本報告では,MLLMに関する研究分野について概説する。
論文 参考訳(メタデータ) (2021-07-01T18:01:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。