論文の概要: How Do Experts Make Sense of Integrated Process Models?
- arxiv url: http://arxiv.org/abs/2505.20667v2
- Date: Wed, 28 May 2025 05:39:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-29 17:35:50.097425
- Title: How Do Experts Make Sense of Integrated Process Models?
- Title(参考訳): 専門家はどのように統合プロセスモデルを理解するのか?
- Authors: Tianwa Chen, Barbara Weber, Graeme Shanks, Gianluca Demartini, Marta Indulska, Shazia Sadiq,
- Abstract要約: 本研究では、専門家プロセスワーカーが、統合モデリングアプローチによって提供された情報をどのように理解するかを考察する。
ビジネスプロセスとルールの統合モデリングに基づくタスクに携わるエキスパートプロセスワーカーを研究することで、私たちは、センスメイキングの実践をよりよく理解するための道を開いた洞察を提供する。
- 参考スコア(独自算出の注目度): 6.637963166503315
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A range of integrated modeling approaches have been developed to enable a holistic representation of business process logic together with all relevant business rules. These approaches address inherent problems with separate documentation of business process models and business rules. In this study, we explore how expert process workers make sense of the information provided through such integrated modeling approaches. To do so, we complement verbal protocol analysis with eye-tracking metrics to reveal nuanced user behaviours involved in the main phases of sensemaking, namely information foraging and information processing. By studying expert process workers engaged in tasks based on integrated modeling of business processes and rules, we provide insights that pave the way for a better understanding of sensemaking practices and improved development of business process and business rule integration approaches. Our research underscores the importance of offering personalized support mechanisms that increase the efficacy and efficiency of sensemaking practices for process knowledge workers.
- Abstract(参考訳): ビジネスプロセスロジックの全体的表現と関連するすべてのビジネスルールを実現するために、さまざまな統合モデリングアプローチが開発されています。
これらのアプローチは、ビジネスプロセスモデルとビジネスルールの分離したドキュメントで固有の問題に対処します。
本研究では,専門家プロセスワーカーがこのような統合モデリングアプローチによって提供された情報をどのように理解するかを考察する。
そこで本稿では,視覚情報処理や情報処理など,感覚形成の主要な段階に関わるユーザ行動を明らかにするために,言語プロトコル分析と視線追跡指標を補完する。
ビジネスプロセスとルールの統合モデリングに基づくタスクに携わる専門家のプロセスワーカーを研究することで、センスメイキングの実践をよりよく理解するための道を開いた洞察を与え、ビジネスプロセスとビジネスルール統合のアプローチを改善します。
本研究は、プロセス知識労働者に対するセンスメイキングの実践の有効性と効率を高めるためのパーソナライズされた支援メカニズムを提供することの重要性を明らかにするものである。
関連論文リスト
- A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems [93.8285345915925]
推論(Reasoning)は、論理的推論、問題解決、意思決定を可能にする基本的な認知プロセスである。
大規模言語モデル(LLM)の急速な進歩により、推論は高度なAIシステムを区別する重要な能力として浮上した。
我々は,(1)推論が達成される段階を定義するレジーム,(2)推論プロセスに関与するコンポーネントを決定するアーキテクチャの2つの側面に沿って既存の手法を分類する。
論文 参考訳(メタデータ) (2025-04-12T01:27:49Z) - WISE: Unraveling Business Process Metrics with Domain Knowledge [0.0]
複雑な産業プロセスの異常は、しばしばイベントデータの高変動性と複雑さによって隠蔽される。
本稿では、ドメイン知識、プロセスマイニング、機械学習の統合により、ビジネスプロセスメトリクスを分析する新しい手法WISEを紹介する。
WISEはビジネスプロセス分析における自動化を強化し、望ましいプロセスフローからの逸脱を効果的に検出する。
論文 参考訳(メタデータ) (2024-10-06T07:57:08Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - A Systematic Review of Business Process Improvement: Achievements and Potentials in Combining Concepts from Operations Research and Business Process Management [0.0]
ビジネスプロセスマネジメントと運用リサーチは、組織における価値創造を強化することを目的としています。
この体系的な文献レビューは、両方の分野から組み合わせた概念を用いた作品を特定し分析する。
その結果,資源配分とスケジューリングの問題に強い焦点が当てられている。
論文 参考訳(メタデータ) (2024-09-02T14:13:14Z) - Bridging Domain Knowledge and Process Discovery Using Large Language Models [0.0]
本稿では,Large Language Models(LLM)を利用して,ドメイン知識を直接プロセス発見に統合する。
LLMから派生したルールを使用して、モデル構築をガイドし、ドメイン知識と実際のプロセス実行の整合性を確保します。
論文 参考訳(メタデータ) (2024-08-30T14:23:40Z) - Intelligent Cross-Organizational Process Mining: A Survey and New Perspectives [40.62773366902451]
本稿では,プロセスマイニングの分野に関する具体的な見解を提唱する。
まず、プロセスマイニングの枠組み、一般的な産業応用、そして人工知能と組み合わされた最新の進歩について要約する。
この視点は、複雑な多組織データ分析のための洗練されたソリューションを提供するために人工知能を活用することによって、プロセスマイニングに革命をもたらすことを目的としている。
論文 参考訳(メタデータ) (2024-07-15T23:30:34Z) - A Review of AI and Machine Learning Contribution in Predictive Business Process Management (Process Enhancement and Process Improvement Approaches) [4.499009117849108]
我々は、ビジネスプロセス管理におけるAI/MLの統合を検討するため、学術文献の体系的なレビューを行う。
ビジネスプロセス管理とプロセスマップでは、AI/MLはプロセスメトリクスの運用データを使用して大幅に改善されている。
論文 参考訳(メタデータ) (2024-07-07T18:26:00Z) - Towards Automated Knowledge Integration From Human-Interpretable Representations [55.2480439325792]
我々は,情報メタ学習の原理を理論的に導入・動機付けし,自動的かつ制御可能な帰納バイアス選択を可能にする。
データ効率と一般化を改善するための情報メタラーニングのメリットと限界を実証的に示す。
論文 参考訳(メタデータ) (2024-02-25T15:08:37Z) - Extending Process Discovery with Model Complexity Optimization and
Cyclic States Identification: Application to Healthcare Processes [62.997667081978825]
モデル最適化のための半自動支援を実現するプロセスマイニング手法を提案する。
所望の粒度で生モデルを抽象化するモデル単純化手法が提案されている。
医療分野の異なるアプリケーションから得られた3つのデータセットを用いて、技術的ソリューションの能力を実証することを目的としている。
論文 参考訳(メタデータ) (2022-06-10T16:20:59Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
エージェントが意思決定を行う方法の解釈可能な表現を開発する方法を示す。
一連の軌跡に基づく意思決定プロセスを理解することにより,このオンライン学習問題に対して,政策推論問題を逆問題とみなした。
本稿では、エージェントがそれらを更新するプロセスと並行して、その影響を遡及的に推定する実用的なアルゴリズムを提案する。
UNOSの臓器提供受諾決定の分析に応用することで、我々のアプローチは意思決定プロセスを管理する要因や時間とともにどのように変化するかに、貴重な洞察をもたらすことができることを実証する。
論文 参考訳(メタデータ) (2022-03-14T17:40:42Z) - Knowledge-Aware Procedural Text Understanding with Multi-Stage Training [110.93934567725826]
本稿では,このような文書の理解とプロセス中のエンティティの状態や場所の追跡を目的とした手続き的テキスト理解の課題に焦点をあてる。
常識的推論の難しさとデータ不足という2つの課題はまだ未解決のままである。
我々は、複数の外部知識を効果的に活用する、KnOwledge-Aware ProceduraL text understAnding (KOALA)モデルを提案する。
論文 参考訳(メタデータ) (2020-09-28T10:28:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。