Complex System Diagnostics Using a Knowledge Graph-Informed and Large Language Model-Enhanced Framework
- URL: http://arxiv.org/abs/2505.21291v1
- Date: Tue, 27 May 2025 14:54:49 GMT
- Title: Complex System Diagnostics Using a Knowledge Graph-Informed and Large Language Model-Enhanced Framework
- Authors: Saman Marandi, Yu-Shu Hu, Mohammad Modarres,
- Abstract summary: We present a novel diagnostic framework that integrates Knowledge Graphs (KGs) and Large Language Models (LLMs)<n>Our approach introduces a diagnostic framework grounded in the functional modeling principles of the Dynamic Master Logic (DML) model.<n>A case study on an auxiliary feedwater system demonstrated the framework's effectiveness, with over 90% accuracy in key elements and consistent tool and argument extraction.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we present a novel diagnostic framework that integrates Knowledge Graphs (KGs) and Large Language Models (LLMs) to support system diagnostics in high-reliability systems such as nuclear power plants. Traditional diagnostic modeling struggles when systems become too complex, making functional modeling a more attractive approach. Our approach introduces a diagnostic framework grounded in the functional modeling principles of the Dynamic Master Logic (DML) model. It incorporates two coordinated LLM components, including an LLM-based workflow for automated construction of DML logic from system documentation and an LLM agent that facilitates interactive diagnostics. The generated logic is encoded into a structured KG, referred to as KG-DML, which supports hierarchical fault reasoning. Expert knowledge or operational data can also be incorporated to refine the model's precision and diagnostic depth. In the interaction phase, users submit natural language queries, which are interpreted by the LLM agent. The agent selects appropriate tools for structured reasoning, including upward and downward propagation across the KG-DML. Rather than embedding KG content into every prompt, the LLM agent distinguishes between diagnostic and interpretive tasks. For diagnostics, the agent selects and executes external tools that perform structured KG reasoning. For general queries, a Graph-based Retrieval-Augmented Generation (Graph-RAG) approach is used, retrieving relevant KG segments and embedding them into the prompt to generate natural explanations. A case study on an auxiliary feedwater system demonstrated the framework's effectiveness, with over 90% accuracy in key elements and consistent tool and argument extraction, supporting its use in safety-critical diagnostics.
Related papers
- Graph-Augmented Large Language Model Agents: Current Progress and Future Prospects [53.24831948221361]
Graph-augmented LLM Agents (GLA) enhance structure, continuity, and coordination in complex agent systems.<n>This paper offers a timely and comprehensive overview of recent advances and highlights key directions for future work.<n>We hope this paper can serve as a roadmap for future research on GLA and foster a deeper understanding of the role of graphs in GLA agent systems.
arXiv Detail & Related papers (2025-07-29T00:27:12Z) - Leveraging Knowledge Graphs and LLM Reasoning to Identify Operational Bottlenecks for Warehouse Planning Assistance [1.2749527861829046]
Our framework integrates Knowledge Graphs (KGs) and Large Language Model (LLM)-based agents.<n>It transforms raw DES data into a semantically rich KG, capturing relationships between simulation events and entities.<n>An LLM-based agent uses iterative reasoning, generating interdependent sub-questions. For each sub-question, it creates Cypher queries for KG interaction, extracts information, and self-reflects to correct errors.
arXiv Detail & Related papers (2025-07-23T07:18:55Z) - Discrete Tokenization for Multimodal LLMs: A Comprehensive Survey [69.45421620616486]
This work presents the first structured taxonomy and analysis of discrete tokenization methods designed for large language models (LLMs)<n>We categorize 8 representative VQ variants that span classical and modern paradigms and analyze their algorithmic principles, training dynamics, and integration challenges with LLM pipelines.<n>We identify key challenges including codebook collapse, unstable gradient estimation, and modality-specific encoding constraints.
arXiv Detail & Related papers (2025-07-21T10:52:14Z) - Do We Really Need GNNs with Explicit Structural Modeling? MLPs Suffice for Language Model Representations [50.45261187796993]
Graph Neural Networks (GNNs) fail to fully utilize structural information, whereas Multi-Layer Perceptrons (MLPs) exhibit a surprising ability in structure-aware tasks.<n>This paper introduces a comprehensive probing framework from an information-theoretic perspective.
arXiv Detail & Related papers (2025-06-26T18:10:28Z) - A Multimodal Multi-Agent Framework for Radiology Report Generation [2.1477122604204433]
Radiology report generation (RRG) aims to automatically produce diagnostic reports from medical images.<n>We propose a multimodal multi-agent framework for RRG that aligns with the stepwise clinical reasoning workflow.
arXiv Detail & Related papers (2025-05-14T20:28:04Z) - Learning to Be A Doctor: Searching for Effective Medical Agent Architectures [32.82784216021035]
This paper introduces a novel framework for the automated design of medical agent architectures.<n>Motivated by the success of automated machine learning (AutoML), we define a hierarchical and expressive agent search space.<n>Our framework conceptualizes medical agents as graph-based architectures composed of diverse, functional node types.
arXiv Detail & Related papers (2025-04-15T15:44:21Z) - How Well Can Modern LLMs Act as Agent Cores in Radiology Environments? [54.36730060680139]
RadA-BenchPlat is an evaluation platform that benchmarks the performance of large language models (LLMs) in radiology environments.<n>The platform also defines ten categories of tools for agent-driven task solving and evaluates seven leading LLMs.
arXiv Detail & Related papers (2024-12-12T18:20:16Z) - Diagnostic Reasoning in Natural Language: Computational Model and Application [68.47402386668846]
We investigate diagnostic abductive reasoning (DAR) in the context of language-grounded tasks (NL-DAR)
We propose a novel modeling framework for NL-DAR based on Pearl's structural causal models.
We use the resulting dataset to investigate the human decision-making process in NL-DAR.
arXiv Detail & Related papers (2024-09-09T06:55:37Z) - A process algebraic framework for multi-agent dynamic epistemic systems [55.2480439325792]
We propose a unifying framework for modeling and analyzing multi-agent, knowledge-based, dynamic systems.
On the modeling side, we propose a process algebraic, agent-oriented specification language that makes such a framework easy to use for practical purposes.
arXiv Detail & Related papers (2024-07-24T08:35:50Z) - medIKAL: Integrating Knowledge Graphs as Assistants of LLMs for Enhanced Clinical Diagnosis on EMRs [13.806201934732321]
medIKAL combines Large Language Models (LLMs) with knowledge graphs (KGs) to enhance diagnostic capabilities.<n> medIKAL assigns weighted importance to entities in medical records based on their type, enabling precise localization of candidate diseases within KGs.<n>We validated medIKAL's effectiveness through extensive experiments on a newly introduced open-sourced Chinese EMR dataset.
arXiv Detail & Related papers (2024-06-20T13:56:52Z) - KG-Agent: An Efficient Autonomous Agent Framework for Complex Reasoning
over Knowledge Graph [134.8631016845467]
We propose an autonomous LLM-based agent framework, called KG-Agent.
In KG-Agent, we integrate the LLM, multifunctional toolbox, KG-based executor, and knowledge memory.
To guarantee the effectiveness, we leverage program language to formulate the multi-hop reasoning process over the KG.
arXiv Detail & Related papers (2024-02-17T02:07:49Z) - Integrating LLMs for Explainable Fault Diagnosis in Complex Systems [0.0]
This paper introduces an integrated system designed to enhance the explainability of fault diagnostics in complex systems, such as nuclear power plants.
By combining a physics-based diagnostic tool with a Large Language Model, we offer a novel solution that not only identifies faults but also provides clear, understandable explanations of their causes and implications.
arXiv Detail & Related papers (2024-02-08T22:11:21Z) - Interpretable Medical Diagnostics with Structured Data Extraction by
Large Language Models [59.89454513692417]
Tabular data is often hidden in text, particularly in medical diagnostic reports.
We propose a novel, simple, and effective methodology for extracting structured tabular data from textual medical reports, called TEMED-LLM.
We demonstrate that our approach significantly outperforms state-of-the-art text classification models in medical diagnostics.
arXiv Detail & Related papers (2023-06-08T09:12:28Z) - Large Language Models for Biomedical Knowledge Graph Construction:
Information extraction from EMR notes [0.0]
We propose an end-to-end machine learning solution based on large language models (LLMs)
The entities used in the KG construction process are diseases, factors, treatments, as well as manifestations that coexist with the patient while experiencing the disease.
The application of the proposed methodology is demonstrated on age-related macular degeneration.
arXiv Detail & Related papers (2023-01-29T15:52:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.