Wave-particle duality ellipse and application in quantum imaging with undetected photons
- URL: http://arxiv.org/abs/2505.21443v2
- Date: Tue, 08 Jul 2025 17:48:44 GMT
- Title: Wave-particle duality ellipse and application in quantum imaging with undetected photons
- Authors: Pawan Khatiwada, Xiao-Feng Qian,
- Abstract summary: We present a systematic framework to quantify the interplay between coherence and wave-particle duality in generic two-path interference systems.<n>We extend this framework to quantum imaging with undetected photons (QIUP), where both path information and photon interference are inherently linked to spatial object reconstruction.<n>Our results advance the fundamental understanding of quantum duality while offering a practical toolkit for optimizing coherence-driven quantum technologies.
- Score: 0.5040487125017779
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present a systematic framework to quantify the interplay between coherence and wave-particle duality in generic two-path interference systems. Our analysis reveals a closed-form duality ellipse (DE) equality, that rigorously unifies visibility (a traditional waveness measure) and predictability (a particleness measure) with degree of coherence, providing a complete mathematical embodiment of Bohr's complementarity principle. Extending this framework to quantum imaging with undetected photons (QIUP), where both path information and photon interference are inherently linked to spatial object reconstruction, we establish an imaging duality ellipse (IDE) that directly connects wave-particle duality to the object's transmittance profile. This relation enables object characterization through duality measurements alone and remains robust against experimental imperfections such as decoherence and misalignment. Our results advance the fundamental understanding of quantum duality while offering a practical toolkit for optimizing coherence-driven quantum technologies, from imaging to sensing.
Related papers
- Photonic Energy-Coherence Theorem and Experimental Validations [9.144623579455322]
We derive a device-independent uncertainty relation for wave-particle duality using the concept of energy capacity.<n>We experimentally validate this wave-particle duality relation using a photon-based platform.
arXiv Detail & Related papers (2025-06-10T06:13:05Z) - Tracking phase entanglement during propagation of downconverted photons [0.0]
We study phase entanglement in which the biphoton state is correlated in the complex phase of its wavefunction.<n>We show, both theoretically and experimentally, that the observed two-photon interference structure is markedly different from that produced by position-correlated photons.<n>Such interference using phase-entangled light has not been attempted before and opens avenues for advanced experiments and applications in the field of spatial entanglement.
arXiv Detail & Related papers (2025-05-23T13:52:32Z) - The Influence of Quantum Correlation on the Holonomy of Spatially-Structured Bi-Photons [0.0]
Entanglement parameters are shown to influence holonomy in two distinct ways.
An optical circuit consisting of a pair of misoriented mode converters gives a practical demonstration.
arXiv Detail & Related papers (2024-09-24T19:03:57Z) - Experimental demonstration of the equivalence of entropic uncertainty with wave-particle duality [0.0]
We experimentally demonstrate the equivalence of wave-particle duality and entropic uncertainty relations using orbital angular momentum (OAM) states of light.
Our results provide fundamental insights into the complementarity principle from an informational perspective, with implications for the broader field of quantum technologies.
arXiv Detail & Related papers (2024-07-04T10:01:42Z) - Demonstration of Lossy Linear Transformations and Two-Photon Interference on a Photonic Chip [78.1768579844556]
We show that engineered loss, using an auxiliary waveguide, allows one to invert the spatial statistics from bunching to antibunching.
We study the photon statistics within the loss-emulating channel and observe photon coincidences, which may provide insights into the design of quantum photonic integrated chips.
arXiv Detail & Related papers (2024-04-09T06:45:46Z) - Temporal quantum eraser: Fusion gates with distinguishable photons [0.0]
We show that the ideal operation of two-photon gates can be recovered from distinguishable photons.<n>We introduce a temporal quantum eraser between a pair of modally-impure single-photon sources.<n>The ability to lift the requirement for identical photons bears considerable potential in linear-optics quantum information processing.
arXiv Detail & Related papers (2024-04-01T22:44:02Z) - Direct Manipulation of quantum entanglement from the non-Hermitian
nature of light-matter interaction [7.106490464673198]
We report the demonstration of exceptional point (EP) in biphotons by measuring the light-atom interaction as a natural non-Hermitian system.
Such biphoton correlation is tuned within an unprecedented large range from Rabi oscillation to antibunching-exponential-decay.
Our results provide a unique method to realize the controllability of natural non-Hermitian processes without the assistance of artificial photonic structures.
arXiv Detail & Related papers (2023-11-30T03:52:11Z) - Estimation with ultimate quantum precision of the transverse displacement between two photons via two-photon interference sampling measurements [0.0]
We present a quantum sensing scheme achieving the ultimate quantum sensitivity in the estimation of the transverse displacement between two photons interfering at a balanced beam splitter.
This scheme can possibly lead to enhanced high-precision nanoscopic techniques, such as super-resolved single-molecule localization microscopy with quantum dots.
arXiv Detail & Related papers (2023-09-13T11:18:00Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.