Photonic Energy-Coherence Theorem and Experimental Validations
- URL: http://arxiv.org/abs/2506.08483v1
- Date: Tue, 10 Jun 2025 06:13:05 GMT
- Title: Photonic Energy-Coherence Theorem and Experimental Validations
- Authors: Yan-Han Yang, Xin-Zhu Liu, Jun-Li Jiang, Hu Chen, Xue Yang, Xiao-Feng Qian, Shao-Ming Fei, Ming-Xing Luo,
- Abstract summary: We derive a device-independent uncertainty relation for wave-particle duality using the concept of energy capacity.<n>We experimentally validate this wave-particle duality relation using a photon-based platform.
- Score: 9.144623579455322
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Wave-particle duality, intertwining two inherently contradictory properties of quantum systems, remains one of the most conceptually profound aspects of quantum mechanics. By using the concept of energy capacity, the ability of a quantum system to store and extract energy, we derive a device-independent uncertainty relation for wave-particle duality. This relation is shown to be independent of both the representation space and the measurement basis of the quantum system. Furthermore, we experimentally validate this wave-particle duality relation using a photon-based platform.
Related papers
- Entanglement of photonic modes from a continuously driven two-level system [34.50067763557076]
We experimentally generate entangled photonic modes by continuously exciting a quantum emitter, a superconducting qubit, with a coherent drive.<n>We show that entanglement is generated between modes extracted from the two sidebands of the resonance fluorescence spectrum.<n>Our approach can be utilized to distribute entanglement at a high rate in various physical platforms.
arXiv Detail & Related papers (2024-07-10T18:48:41Z) - Experimental demonstration of the equivalence of entropic uncertainty with wave-particle duality [0.0]
We experimentally demonstrate the equivalence of wave-particle duality and entropic uncertainty relations using orbital angular momentum (OAM) states of light.
Our results provide fundamental insights into the complementarity principle from an informational perspective, with implications for the broader field of quantum technologies.
arXiv Detail & Related papers (2024-07-04T10:01:42Z) - Quantum Coherence and Distinguishability as Complementary Resources: A Resource-Theoretic Perspective from Wave-Particle Duality [7.618711227642954]
We treat quantum coherence and classical distinguishability as complementary resources.<n>We prove that in an ensemble of mutually pure states, the sum of co-bits', quantifying the coherence preserved under incoherent free operations, is bounded.<n>This duality relation exposes an inherent trade-off between the simultaneous preservation of a system's quantum coherence and the extraction of its classical distinguishability.
arXiv Detail & Related papers (2024-04-22T16:33:31Z) - Separating the wave and particle attributes of two entangled photons [0.0]
In our common sense, the wave and particle properties of a quantum object are inseparable.
In this study, we put forward a feasible scheme to spatially separate the wave and particle attributes of two entangled photons.
Our scheme also guarantees that the observation of wave and particle properties of the two entangled photons always obey the Bohr's complementarity principle.
arXiv Detail & Related papers (2023-12-03T08:18:50Z) - Partition of kinetic energy and magnetic moment in dissipative
diamagnetism [20.218184785285132]
We analyze dissipative diamagnetism, arising due to dissipative cyclotron motion in two dimensions, in the light of the quantum counterpart of energy equipartition theorem.
The expressions for kinetic energy and magnetic moment are reformulated in the context of superstatistics.
arXiv Detail & Related papers (2022-07-30T08:07:28Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Enhancing nonclassical bosonic correlations in a Quantum Walk network
through experimental control of disorder [50.591267188664666]
We experimentally realize a controllable inhomogenous Quantum Walk dynamics.
We observe two photon states which exhibit an enhancement in the quantum correlations between two modes of the network.
arXiv Detail & Related papers (2021-02-09T10:57:00Z) - Experimental Validation of Fully Quantum Fluctuation Theorems Using
Dynamic Bayesian Networks [48.7576911714538]
Fluctuation theorems are fundamental extensions of the second law of thermodynamics for small systems.
We experimentally verify detailed and integral fully quantum fluctuation theorems for heat exchange using two quantum-correlated thermal spins-1/2 in a nuclear magnetic resonance setup.
arXiv Detail & Related papers (2020-12-11T12:55:17Z) - Experimental tests of density matrix's properties-based complementarity
relations [0.0]
Bohr's complementarity principle states that, with a given experimental apparatus configuration, one can observe either the wave-like or the particle-like character of a quantum system, but not both.
Recently, a formalism was developed and quantifiers for the particleness and waveness of a quantum system were derived from the mathematical structure of QM.
In this article, we perform experimental tests of these complementarity relations applied to a particular class of one-qubit quantum states and also for random quantum states of one, two, and three qubits.
arXiv Detail & Related papers (2020-10-29T20:27:49Z) - Topological photon pairs in a superconducting quantum metamaterial [44.62475518267084]
We use an array of superconducting qubits to engineer a nontrivial quantum metamaterial.
By performing microwave spectroscopy of the fabricated array, we experimentally observe the spectrum of elementary excitations.
We find not only the single-photon topological states but also the bands of exotic bound photon pairs arising due to the inherent anharmonicity of qubits.
arXiv Detail & Related papers (2020-06-23T07:04:27Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z) - Quantifying the particle aspect of quantum systems [0.31457219084519]
We discuss the possibility of a quantum system to exhibit properties akin to both the classically held notions of being a particle and a wave.<n>A conceptual foundation for the wave nature of a quantum state has recently been presented, through the notion of quantum coherence.
arXiv Detail & Related papers (2018-12-20T16:02:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.