Universal principles for sudden-quench quantum Otto engines
- URL: http://arxiv.org/abs/2505.21933v1
- Date: Wed, 28 May 2025 03:38:00 GMT
- Title: Universal principles for sudden-quench quantum Otto engines
- Authors: R. S. Watson, K. V. Kheruntsyan,
- Abstract summary: This work extends recent results for an interaction-driven Otto cycle to generic many-body interacting quantum models.<n>We demonstrate that the net work of such an engine cycle is determined entirely by interparticle correlations.<n>We then extend the analysis of interaction-driven quantum Otto engine cycles to systems where control is exerted over the strength of arbitrary quantum operators.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We apply a simple sudden quench approximation for the unitary work strokes of a quantum Otto engine in order to provide a general analysis of its performance, applicable to arbitrary quantum models with two-body interactions. This work extends recent results for an interaction-driven Otto cycle to generic many-body interacting quantum models, providing universal bounds on their operation efficiency. From this, we demonstrate that the net work of such an engine cycle is determined entirely by interparticle correlations. Applications are demonstrated for a handful of paradigmatic many-body quantum models, including a novel engine -- with a spin-1/2 Fermi gas with contact two-body interactions as its working medium -- in which we leverage control over spin polarization to greatly enhance its performance compared to the unpolarized case. We then extend the analysis of interaction-driven quantum Otto engine cycles to systems where control is exerted over the strength of arbitrary quantum operators that might be present in the system Hamiltonian (such as one-body, or three-body, etc.), finding that the general principles derived for the sudden quench with two-body interactions apply universally. As an example, this is demonstrated for a conventional volumetric Otto cycle, where beneficial net work is generated by leveraging the control over the frequency of an external trap, which is a one-body operator. However, we emphasize that the results derived here apply universally to all Otto engine cycles operating under a sudden quench protocol.
Related papers
- Multi-Photon Quantum Rabi Models with Center-of-Mass Motion [45.73541813564926]
We introduce a rigorous, second-quantized framework for describing multi-$Lambda$-atoms in a cavity.<n>A key feature of our approach is the systematic application of a Hamiltonian averaging theory to the atomic field operators.<n>A significant finding is the emergence of a particle-particle interaction mediated by ancillary states.
arXiv Detail & Related papers (2025-07-07T09:50:48Z) - Exploring the role of criticality in the quantum Otto cycle fueled by the anisotropic quantum Rabi-Stark model [0.0]
Quantum heat machines, encompassing heat engines, refrigerators, heaters, and accelerators, represent the forefront of quantum thermodynamics.
This paper investigates a quantum Otto engine operating in both ideal and finite-time scenarios.
By focusing on quantum heat engines, our study reveals that these phase transitions critically modulate the efficiency and power of AQRSM-based engines.
arXiv Detail & Related papers (2024-07-12T06:36:57Z) - A finite-time quantum Otto engine with tunnel coupled one-dimensional Bose gases [0.0]
We study a finite-time quantum Otto engine cycle driven by inter-particle interactions in a weakly interacting Bose gas.
We find that, unlike a uniform 1D Bose gas, a harmonically trapped quasicondensate cannot operate purely as a emphheat engine.
arXiv Detail & Related papers (2024-04-25T09:54:21Z) - Three-dimensional harmonic oscillator as a quantum Otto engine [65.268245109828]
The coupling between the working fluid and the baths is controlled using an external central potential.
The efficiency and power of several realizations of the proposed engine are computed.
arXiv Detail & Related papers (2023-12-06T09:52:53Z) - Finite Pulse-Time Effects in Long-Baseline Quantum Clock Interferometry [45.73541813564926]
We study the interplay of the quantum center-of-mass $-$ that can become delocalized $-$ together with the internal clock transitions.
We show at the example of a Gaussian laser beam that the proposed quantum-clock interferometers are stable against perturbations from varying optical fields.
arXiv Detail & Related papers (2023-09-25T18:00:03Z) - Quantum many-body thermal machines enabled by atom-atom correlations [0.0]
We study a class of quantum many-body thermal machines whose operation is directly enabled by second-order atom-atom correlations in an ultracold atomic gas.<n>We show that operating these thermal machines in the intended regimes, such as a heat engine, refrigerator, thermal accelerator, or heater, would be impossible without such atom-atom correlations.
arXiv Detail & Related papers (2023-08-10T00:35:47Z) - Effective Hamiltonian theory of open quantum systems at strong coupling [0.0]
We present the reaction-coordinate polaron-transform (RCPT) framework for generating effective Hamiltonian models.
Examples in this work include canonical models for quantum thermalization, charge and energy transport at the nanoscale, performance bounds of quantum thermodynamical machines.
arXiv Detail & Related papers (2022-11-10T17:10:33Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Entanglement catalysis for quantum states and noisy channels [41.94295877935867]
We investigate properties of entanglement and its role for quantum communication.
For transformations between bipartite pure states, we prove the existence of a universal catalyst.
We further develop methods to estimate the number of singlets which can be established via a noisy quantum channel.
arXiv Detail & Related papers (2022-02-10T18:36:25Z) - Dynamics of a multipartite hybrid quantum system with beamsplitter,
dipole-dipole, and Ising interactions [0.0]
We make use of one such hybrid bipartite quantum model, with one subsystem made of a pair of qubits and another comprising a pair of oscillators.
Our basic model is the standard double Jaynes-Cummings system, which is known to support both entanglement transfer and entanglement sudden death.
We show that compared to the beamsplitter or dipole-dipole interaction, the Ising interaction can have a significant positive impact on entanglement sudden death and birth.
arXiv Detail & Related papers (2021-12-21T21:12:08Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Pulsed multireservoir engineering for a trapped ion with applications to
state synthesis and quantum Otto cycles [68.8204255655161]
Reservoir engineering is a remarkable task that takes dissipation and decoherence as tools rather than impediments.
We develop a collisional model to implement reservoir engineering for the one-dimensional harmonic motion of a trapped ion.
Having multiple internal levels, we show that multiple reservoirs can be engineered, allowing for more efficient synthesis of well-known non-classical states of motion.
arXiv Detail & Related papers (2021-11-26T08:32:39Z) - Quantum heat engines with complex working media, complete Otto cycles
and heuristics [0.0]
We examine the performance of a quasi-static quantum Otto engine based on two spins of arbitrary magnitudes.
The study of complete Otto cycles inherent in the average cycle also yields interesting insights into the average performance.
arXiv Detail & Related papers (2021-07-26T16:18:50Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.