Online Fair Division for Personalized $2$-Value Instances
- URL: http://arxiv.org/abs/2505.22174v1
- Date: Wed, 28 May 2025 09:48:16 GMT
- Title: Online Fair Division for Personalized $2$-Value Instances
- Authors: Georgios Amanatidis, Alexandros Lolos, Evangelos Markakis, Victor Turmel,
- Abstract summary: We study an online fair division setting, where goods arrive one at a time and there is a fixed set of $n$ agents.<n>Once a good appears, the value each agent has for it is revealed and it must be allocated immediately and irrevocably to one of the agents.<n>We show how to obtain worst case guarantees with respect to well-known fairness notions.
- Score: 51.278096593080456
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study an online fair division setting, where goods arrive one at a time and there is a fixed set of $n$ agents, each of whom has an additive valuation function over the goods. Once a good appears, the value each agent has for it is revealed and it must be allocated immediately and irrevocably to one of the agents. It is known that without any assumptions about the values being severely restricted or coming from a distribution, very strong impossibility results hold in this setting. To bypass the latter, we turn our attention to instances where the valuation functions are restricted. In particular, we study personalized $2$-value instances, where there are only two possible values each agent may have for each good, possibly different across agents, and we show how to obtain worst case guarantees with respect to well-known fairness notions, such as maximin share fairness and envy-freeness up to one (or two) good(s). We suggest a deterministic algorithm that maintains a $1/(2n-1)$-MMS allocation at every time step and show that this is the best possible any deterministic algorithm can achieve if one cares about every single time step; nevertheless, eventually the allocation constructed by our algorithm becomes a $1/4$-MMS allocation. To achieve this, the algorithm implicitly maintains a fragile system of priority levels for all agents. Further, we show that, by allowing some limited access to future information, it is possible to have stronger results with less involved approaches. By knowing the values of goods for $n-1$ time steps into the future, we design a matching-based algorithm that achieves an EF$1$ allocation every $n$ time steps, while always maintaining an EF$2$ allocation. Finally, we show that our results allow us to get the first nontrivial guarantees for additive instances in which the ratio of the maximum over the minimum value an agent has for a good is bounded.
Related papers
- Cooperative Multi-Agent Constrained Stochastic Linear Bandits [2.099922236065961]
A network of $N$ agents communicate locally to minimize their collective regret while keeping their expected cost under a specified threshold $tau$.
We propose a safe distributed upper confidence bound algorithm, so called textitMA-OPLB, and establish a high probability bound on its $T$-round regret.
We show that our regret bound is of order $ mathcalOleft(fracdtau-c_0fraclog(NT)2sqrtNsqrtTlog (1/|lambda|)
arXiv Detail & Related papers (2024-10-22T19:34:53Z) - Markov Chain-based Optimization Time Analysis of Bivalent Ant Colony Optimization for Sorting and LeadingOnes [0.0]
We show that the ratio of the two pheromone values significantly governs the runtime behavior of Bivalent ACO (BACO)
We show that despite we have a drastically simplified ant algorithm with respect to the influence of the pheromones on the solving process, known bounds on the expected optimization time for the problems OneMax ($O(nlog n)$) and LeadingOnes ($O(n2)$) can be re-produced as a by-product of our approach.
arXiv Detail & Related papers (2024-05-06T11:02:50Z) - Refined Sample Complexity for Markov Games with Independent Linear Function Approximation [49.5660193419984]
Markov Games (MG) is an important model for Multi-Agent Reinforcement Learning (MARL)
This paper first refines the AVLPR framework by Wang et al. (2023), with an insight of designing pessimistic estimation of the sub-optimality gap.
We give the first algorithm that tackles the curse of multi-agents, attains the optimal $O(T-1/2) convergence rate, and avoids $textpoly(A_max)$ dependency simultaneously.
arXiv Detail & Related papers (2024-02-11T01:51:15Z) - Combinatorial Stochastic-Greedy Bandit [79.1700188160944]
We propose a novelgreedy bandit (SGB) algorithm for multi-armed bandit problems when no extra information other than the joint reward of the selected set of $n$ arms at each time $tin [T]$ is observed.
SGB adopts an optimized-explore-then-commit approach and is specifically designed for scenarios with a large set of base arms.
arXiv Detail & Related papers (2023-12-13T11:08:25Z) - Cooperative Thresholded Lasso for Sparse Linear Bandit [6.52540785559241]
We present a novel approach to address the multi-agent sparse contextual linear bandit problem.
It is first algorithm that tackles row-wise distributed data in sparse linear bandits.
It is widely applicable to high-dimensional multi-agent problems where efficient feature extraction is critical for minimizing regret.
arXiv Detail & Related papers (2023-05-30T16:05:44Z) - Subset-Based Instance Optimality in Private Estimation [23.173651165908282]
We show how to construct private algorithms that achieve our notion of instance optimality when estimating a broad class of dataset properties.
Our algorithm simultaneously matches or exceeds the performance of existing algorithms under a range of distributional assumptions.
arXiv Detail & Related papers (2023-03-01T18:49:10Z) - Provably Efficient Reinforcement Learning via Surprise Bound [66.15308700413814]
We propose a provably efficient reinforcement learning algorithm (both computationally and statistically) with general value function approximations.
Our algorithm achieves reasonable regret bounds when applied to both the linear setting and the sparse high-dimensional linear setting.
arXiv Detail & Related papers (2023-02-22T20:21:25Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - Byzantine-Resilient Non-Convex Stochastic Gradient Descent [61.6382287971982]
adversary-resilient distributed optimization, in which.
machines can independently compute gradients, and cooperate.
Our algorithm is based on a new concentration technique, and its sample complexity.
It is very practical: it improves upon the performance of all prior methods when no.
setting machines are present.
arXiv Detail & Related papers (2020-12-28T17:19:32Z) - A No-Free-Lunch Theorem for MultiTask Learning [19.645741778058227]
We consider a seemingly favorable classification scenario where all tasks $P_t$ share a common optimal classifier $h*,$.
We show that, even though such regimes admit minimax rates accounting for both $n$ and $N$, no adaptive algorithm exists.
arXiv Detail & Related papers (2020-06-29T03:03:29Z) - Provably Efficient Safe Exploration via Primal-Dual Policy Optimization [105.7510838453122]
We study the Safe Reinforcement Learning (SRL) problem using the Constrained Markov Decision Process (CMDP) formulation.
We present an provably efficient online policy optimization algorithm for CMDP with safe exploration in the function approximation setting.
arXiv Detail & Related papers (2020-03-01T17:47:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.