論文の概要: Domainator: Detecting and Identifying DNS-Tunneling Malware Using Metadata Sequences
- arxiv url: http://arxiv.org/abs/2505.22220v1
- Date: Wed, 28 May 2025 10:52:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-29 17:35:50.557255
- Title: Domainator: Detecting and Identifying DNS-Tunneling Malware Using Metadata Sequences
- Title(参考訳): Domainator: メタデータシーケンスを用いたDNS変更マルウェアの検出と識別
- Authors: Denis Petrov, Pascal Ruffing, Sebastian Zillien, Steffen Wendzel,
- Abstract要約: Domainatorは、最先端のマルウェアとDNSトンネリングツールを検出し、区別するアプローチである。
本手法を7種類のマルウェアサンプルとトンネルツールを用いて評価し,DNSトラフィックに基づいて特定のマルウェアを識別する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, malware with tunneling (or: covert channel) capabilities is on the rise. While malware research led to several methods and innovations, the detection and differentiation of malware solely based on its DNS tunneling features is still in its infancy. Moreover, no work so far has used the DNS tunneling traffic to gain knowledge over the current actions taken by the malware. In this paper, we present Domainator, an approach to detect and differentiate state-of-the-art malware and DNS tunneling tools without relying on trivial (but quickly altered) features such as "magic bytes" that are embedded into subdomains. Instead, we apply an analysis of sequential patterns to identify specific types of malware. We evaluate our approach with 7 different malware samples and tunneling tools and can identify the particular malware based on its DNS traffic. We further infer the rough behavior of the particular malware through its DNS tunneling artifacts. Finally, we compare our Domainator with related methods.
- Abstract(参考訳): 近年では、トンネリング(または隠蔽チャネル)機能を持つマルウェアが増加傾向にある。
マルウェアの研究はいくつかの方法や革新をもたらしたが、DNSトンネリング機能のみに基づくマルウェアの検出と分化は、まだ初期段階にある。
さらに、これまでの作業では、DNSトンネリングトラフィックを使用して、マルウェアが取っている現在のアクションに関する知識を得ていない。
本稿では、サブドメインに埋め込まれた「魔法のバイト」のような自明な(しかしすぐに変更された)機能に頼ることなく、最先端のマルウェアやDNSトンネリングツールを検知し、識別するアプローチであるDomainatorを提案する。
代わりに、特定の種類のマルウェアを特定するために、シーケンシャルパターンの分析を適用する。
本手法を7種類のマルウェアサンプルとトンネルツールを用いて評価し,DNSトラフィックに基づいて特定のマルウェアを識別する。
さらに、DNSトンネリングアーティファクトを通じて、特定のマルウェアの荒い振る舞いを推測する。
最後に、Domainatorと関連するメソッドを比較します。
関連論文リスト
- Relation-aware based Siamese Denoising Autoencoder for Malware Few-shot Classification [6.7203034724385935]
マルウェアが目に見えないゼロデイエクスプロイトを採用した場合、従来のセキュリティ対策では検出できない可能性がある。
既存の機械学習手法は、特定の時代遅れのマルウェアサンプルに基づいて訓練されており、新しいマルウェアの機能に適応するのに苦労する可能性がある。
そこで我々は,より正確な類似性確率を計算するために,関係認識型埋め込みを用いた新しいシームズニューラルネットワーク(SNN)を提案する。
論文 参考訳(メタデータ) (2024-11-21T11:29:10Z) - TI-DNS: A Trusted and Incentive DNS Resolution Architecture based on Blockchain [8.38094558878305]
ドメイン名システム(DNS)は、DNSキャッシュ中毒を含む悪意のある攻撃に対して脆弱である。
本稿では,ブロックチェーンベースのDNS解決アーキテクチャであるTI-DNSについて述べる。
TI-DNSは、現在のDNSインフラストラクチャのリゾルバ側だけを変更する必要があるため、簡単に採用できる。
論文 参考訳(メタデータ) (2023-12-07T08:03:10Z) - MalDICT: Benchmark Datasets on Malware Behaviors, Platforms, Exploitation, and Packers [44.700094741798445]
マルウェア分類に関する既存の研究は、悪意のあるファイルと良性のあるファイルの区別と、家族によるマルウェアの分類という2つのタスクにのみ焦点をあてている。
我々は、マルウェアが提示する行動の分類、マルウェアが実行しているプラットフォーム、マルウェアが悪用する脆弱性、マルウェアが詰め込まれているパッカーの4つのタスクを特定した。
ClarAVyを使ってタグ付けされ、合計で550万近い悪意のあるファイルで構成されています。
論文 参考訳(メタデータ) (2023-10-18T04:36:26Z) - Detection of Malicious DNS-over-HTTPS Traffic: An Anomaly Detection Approach using Autoencoders [0.0]
暗号化されたDoHトラフィックのみを観測することで、悪意のあるDNSトラフィックを検出できるオートエンコーダを設計する。
提案するオートエンコーダは,複数種類の悪質トラフィックに対して,F-1スコアの中央値が99%と高い検出性能を達成できることがわかった。
論文 参考訳(メタデータ) (2023-10-17T15:03:37Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - Mate! Are You Really Aware? An Explainability-Guided Testing Framework
for Robustness of Malware Detectors [49.34155921877441]
マルウェア検出装置のロバスト性を示すための説明可能性誘導型およびモデルに依存しないテストフレームワークを提案する。
次に、このフレームワークを使用して、操作されたマルウェアを検出する最先端のマルウェア検知器の能力をテストする。
我々の発見は、現在のマルウェア検知器の限界と、その改善方法に光を当てた。
論文 参考訳(メタデータ) (2021-11-19T08:02:38Z) - A Novel Malware Detection Mechanism based on Features Extracted from
Converted Malware Binary Images [0.22843885788439805]
マルウェアのバイナリイメージを使用して、異なる特徴を抽出し、得られたデータセットに異なるML分類器を用いる。
本手法は,抽出した特徴に基づくマルウェアの分類に成功していることを示す。
論文 参考訳(メタデータ) (2021-04-14T06:55:52Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
攻撃者は、マルウェア分類器を訓練するために使用されるデータセットをターゲットとした、高度で効率的な中毒攻撃を、どのように起動できるかを示す。
マルウェア検出領域における他の中毒攻撃とは対照的に、我々の攻撃はマルウェアファミリーではなく、移植されたトリガーを含む特定のマルウェアインスタンスに焦点を当てている。
我々は、この新たに発見された深刻な脅威に対する将来の高度な防御に役立つ包括的検出手法を提案する。
論文 参考訳(メタデータ) (2020-10-30T15:27:44Z) - DNS Tunneling: A Deep Learning based Lexicographical Detection Approach [1.3701366534590496]
DNS Tunnelingは、マルウェアに感染したマシンとの双方向通信を確立するためにそれを利用するハッカーにとって魅力的なものだ。
本稿では,アーキテクチャの複雑さを最小限に抑えた畳み込みニューラルネットワーク(CNN)に基づく検出手法を提案する。
単純なアーキテクチャにもかかわらず、結果として得られたCNNモデルは、0.8%に近い偽陽性率でトンネル領域全体の92%以上を正しく検出した。
論文 参考訳(メタデータ) (2020-06-11T00:10:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。