論文の概要: Geometric GNNs for Charged Particle Tracking at GlueX
- arxiv url: http://arxiv.org/abs/2505.22504v1
- Date: Wed, 28 May 2025 15:52:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-29 17:35:50.710648
- Title: Geometric GNNs for Charged Particle Tracking at GlueX
- Title(参考訳): GlueXにおける荷電粒子追跡のための幾何学的GNN
- Authors: Ahmed Hossam Mohammed, Kishansingh Rajput, Simon Taylor, Denis Furletov, Sergey Furletov, Malachi Schram,
- Abstract要約: ジェファーソン研究所のGlueX実験から得られたデータを追跡するためのGNNモデルの評価を行った。
本稿では,複数のイベントをバッチで処理することで,GNNモデルによる大幅な高速化を実現することを示す。
- 参考スコア(独自算出の注目度): 0.4241054493737716
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nuclear physics experiments are aimed at uncovering the fundamental building blocks of matter. The experiments involve high-energy collisions that produce complex events with many particle trajectories. Tracking charged particles resulting from collisions in the presence of a strong magnetic field is critical to enable the reconstruction of particle trajectories and precise determination of interactions. It is traditionally achieved through combinatorial approaches that scale worse than linearly as the number of hits grows. Since particle hit data naturally form a 3-dimensional point cloud and can be structured as graphs, Graph Neural Networks (GNNs) emerge as an intuitive and effective choice for this task. In this study, we evaluate the GNN model for track finding on the data from the GlueX experiment at Jefferson Lab. We use simulation data to train the model and test on both simulation and real GlueX measurements. We demonstrate that GNN-based track finding outperforms the currently used traditional method at GlueX in terms of segment-based efficiency at a fixed purity while providing faster inferences. We show that the GNN model can achieve significant speedup by processing multiple events in batches, which exploits the parallel computation capability of Graphical Processing Units (GPUs). Finally, we compare the GNN implementation on GPU and FPGA and describe the trade-off.
- Abstract(参考訳): 核物理学の実験は、物質の基本的な構成要素を明らかにすることを目的としている。
この実験は、多くの粒子軌道を持つ複雑な事象を発生させる高エネルギー衝突を含む。
強磁場下での衝突による荷電粒子の追跡は、粒子軌道の再構築と相互作用の正確な決定を可能にするために重要である。
伝統的に、ヒット数が増加するにつれて線形よりも悪化する組合せ的アプローチによって達成される。
粒子の衝突は自然に3次元の点雲を形成し、グラフとして構造化できるため、グラフニューラルネットワーク(GNN)がこのタスクの直感的で効果的な選択として現れる。
本研究では,ジェファーソン研究所におけるGlueX実験のデータに基づく追跡のためのGNNモデルの評価を行った。
我々はシミュレーションデータを用いてモデルをトレーニングし、シミュレーションと実際のGlueX測定の両方でテストする。
GNNに基づくトラック探索は、GlueXで現在使われている従来の手法よりも、セグメントベースの効率を一定の純度で向上し、より高速な推論を提供することを示す。
GNNモデルは、GPU(Graphical Processing Units)の並列計算能力を利用して、バッチで複数のイベントを処理することで、大幅な高速化を実現することができることを示す。
最後に、GPUとFPGAのGNN実装を比較し、トレードオフについて述べる。
関連論文リスト
- Generalization of Graph Neural Networks is Robust to Model Mismatch [84.01980526069075]
グラフニューラルネットワーク(GNN)は、その一般化能力によってサポートされている様々なタスクにおいて、その効果を実証している。
本稿では,多様体モデルから生成される幾何グラフで動作するGNNについて検討する。
本稿では,そのようなモデルミスマッチの存在下でのGNN一般化の堅牢性を明らかにする。
論文 参考訳(メタデータ) (2024-08-25T16:00:44Z) - Improved particle-flow event reconstruction with scalable neural networks for current and future particle detectors [1.4609888393206634]
電子-陽電子衝突における事象再構成のためのスケーラブルな機械学習モデルについて, フル検出器シミュレーションに基づく検討を行った。
グラフニューラルネットワークとカーネルベースのトランスフォーマーを比較し、現実的な再構築を実現しつつ、操作を回避できることを実証する。
最良のグラフニューラルネットワークモデルでは、ルールベースのアルゴリズムと比較して、ジェット横運動量分解能が最大50%向上している。
論文 参考訳(メタデータ) (2023-09-13T08:16:15Z) - Graph Neural Networks-based Hybrid Framework For Predicting Particle
Crushing Strength [31.05985193732974]
粒子破砕の機械的挙動を特徴付けるためにグラフニューラルネットワークを用いる。
我々は,粒状フラグメントビューにおける粒子破砕強度を予測するために,GNNに基づくハイブリッドフレームワークを考案した。
我々のデータとコードはhttps://github.com/doujiang-zheng/GNN-For-Particle-Crushingで公開されています。
論文 参考訳(メタデータ) (2023-07-26T02:18:04Z) - Equivariant Graph Neural Networks for Charged Particle Tracking [1.6626046865692057]
EuclidNetは荷電粒子追跡のための新しい対称性等価GNNである。
TrackMLデータセット上の最先端のインタラクションネットワークに対してベンチマークを行う。
以上の結果から,EuclidNetは小規模なモデルスケールでほぼ最先端の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2023-04-11T15:43:32Z) - Transformer with Implicit Edges for Particle-based Physics Simulation [135.77656965678196]
Implicit Edges (TIE) を用いたトランスフォーマーは、素粒子相互作用のリッチなセマンティクスをエッジフリーでキャプチャする。
様々な複雑さと素材の多様な領域におけるモデルの評価を行った。
論文 参考訳(メタデータ) (2022-07-22T03:45:29Z) - Towards Quantum Graph Neural Networks: An Ego-Graph Learning Approach [47.19265172105025]
グラフ構造化データのための新しいハイブリッド量子古典アルゴリズムを提案し、これをEgo-graph based Quantum Graph Neural Network (egoQGNN)と呼ぶ。
egoQGNNはテンソル積とユニティ行列表現を用いてGNN理論フレームワークを実装し、必要なモデルパラメータの数を大幅に削減する。
このアーキテクチャは、現実世界のデータからヒルベルト空間への新しいマッピングに基づいている。
論文 参考訳(メタデータ) (2022-01-13T16:35:45Z) - Transferability Properties of Graph Neural Networks [125.71771240180654]
グラフニューラルネットワーク(GNN)は、中規模グラフでサポートされているデータから表現を学ぶのに成功している。
適度な大きさのグラフ上でGNNを訓練し、それらを大規模グラフに転送する問題について検討する。
その結果, (i) グラフサイズに応じて転送誤差が減少し, (ii) グラフフィルタは非線型性の散乱挙動によってGNNにおいて緩和されるような転送可能性-識別可能性トレードオフを有することがわかった。
論文 参考訳(メタデータ) (2021-12-09T00:08:09Z) - Graph Neural Networks for Charged Particle Tracking on FPGAs [2.6402980149746913]
CERN大型ハドロン衝突型加速器(LHC)における衝突時の荷電粒子軌道の決定は重要な問題であるが難しい問題である。
グラフニューラルネットワーク(GNN)は、幾何学的なディープラーニングアルゴリズムの一種であり、このタスクにうまく適用されている。
我々は、GNNをフィールドプログラマブルゲートアレイ(FPGA)のためのファームウェアに変換するための、$textthls4ml$と呼ばれるより広範なツールに統合された自動翻訳ワークフローを導入する。
論文 参考訳(メタデータ) (2021-12-03T17:56:10Z) - Scalable Graph Networks for Particle Simulations [1.933681537640272]
完全に接続された相互作用グラフを階層的なグラフに変換するアプローチを導入する。
このアプローチを用いることで、単一のGPU上でも、はるかに大きなパーティクル数でモデルをトレーニングすることが可能になります。
提案手法は, 大規模重力N体シミュレーションにおいても高い精度と効率を保っている。
論文 参考訳(メタデータ) (2020-10-14T10:54:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。