Quantum engineering of high harmonic generation
- URL: http://arxiv.org/abs/2505.22536v1
- Date: Wed, 28 May 2025 16:22:01 GMT
- Title: Quantum engineering of high harmonic generation
- Authors: Neda Boroumand, Adam Thorpe, Graeme Bart, Lu Wang, David N. Purschke, Giulio Vampa, Thomas Brabec,
- Abstract summary: In quantum sideband high harmonic generation (QSHHG) high harmonic generation is perturbed by a bright quantum field resulting in harmonic sidebands.<n>A projective measurement on either creates a variety of non-classical states commonly used in quantum information science.<n>This opens a pathway towards quantum engineering high harmonic generation as a short wavelength source for quantum information science.
- Score: 3.0300658003135714
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In quantum sideband high harmonic generation (QSHHG), high harmonic generation is perturbed by a bright quantum field resulting in harmonic sidebands, with the intent to transfer non-classical properties from the quantum perturbation to the harmonic sidebands. So far, non-classical features have not been found in QSHHG yet. The closed form theory of QSHHG in atoms and solids developed here answers the question under which conditions non-classical features can be realized. QSHHG results in a multi-mode entanglement between harmonic sideband modes and perturbative quantum mode. A projective measurement on either creates a variety of non-classical states commonly used in quantum information science. This opens a pathway towards quantum engineering high harmonic generation as a short wavelength source for quantum information science.
Related papers
- The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Efficient Quantum Pseudorandomness from Hamiltonian Phase States [41.94295877935867]
We introduce a quantum hardness assumption called the Hamiltonian Phase State (HPS) problem.
We show that our assumption is plausibly fully quantum; meaning, it cannot be used to construct one-way functions.
We show that our assumption and its variants allow us to efficiently construct many pseudorandom quantum primitives.
arXiv Detail & Related papers (2024-10-10T16:10:10Z) - Breakdown of the Quantum Distinction of Regular and Chaotic Classical Dynamics in Dissipative Systems [0.0]
In an isolated system, quantum chaos refers to properties of the spectrum that emerge when the classical counterpart of the system is chaotic.<n>We show that the onset of cubic level repulsion in the open quantum model is not always related with chaotic structures in the classical limit.
arXiv Detail & Related papers (2024-06-11T18:00:03Z) - Generation of squeezed high-order harmonics [0.0]
We derive a formula for the quantum state of the high harmonics, when driven by arbitrary quantum light states.
Our results pave the way for the generation of squeezed extreme-ultraviolet ultrashort pulses.
arXiv Detail & Related papers (2023-11-19T07:29:02Z) - Hybrid quantum-classical dynamics of pure-dephasing systems [0.0]
We consider the interaction dynamics of a classical oscillator and a quantum two-level system for different pure-dephasing Hamiltonians of the type $widehatH(q,p)=H_C(q,p)boldsymbol1+H_I(q,p)widehatsigma_z$.
arXiv Detail & Related papers (2023-03-08T12:22:00Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Quantifying fermionic nonlinearity of quantum circuits [0.5658123802733283]
We quantify the classical simulatability of quantum circuits designed for simulating fermionic Hamiltonians.
We find that, depending on the error probability and atomic spacing, there are regions where the fermionic nonlinearity becomes very small or unity.
arXiv Detail & Related papers (2021-11-29T15:31:43Z) - Chaos in coupled Kerr-nonlinear parametric oscillators [0.0]
We investigate complex dynamics, i.e., chaos, in two coupled nondissipative KPOs at a few-photon level.
We conclude that some of them can be regarded as quantum signatures of chaos, together with energy-level spacing statistics.
arXiv Detail & Related papers (2021-10-08T10:35:12Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.