Fast Trajectory-Independent Model-Based Reconstruction Algorithm for Multi-Dimensional Magnetic Particle Imaging
- URL: http://arxiv.org/abs/2505.22797v1
- Date: Wed, 28 May 2025 19:13:46 GMT
- Title: Fast Trajectory-Independent Model-Based Reconstruction Algorithm for Multi-Dimensional Magnetic Particle Imaging
- Authors: Vladyslav Gapyak, Thomas März, Andreas Weinmann,
- Abstract summary: 2D Particleoidal Imaging (MPI) is a promising technique for visualizing the distribution of superparamagnetic nanoparticles.<n>MPI reconstruction relies on either time-consuming distribution system matrix or model-based simulation of the forward operator.<n>In this paper we present the first reconstruction on real trajectory-independent MPI data with a model-based MPI reconstruction.
- Score: 1.7614751781649953
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Magnetic Particle Imaging (MPI) is a promising tomographic technique for visualizing the spatio-temporal distribution of superparamagnetic nanoparticles, with applications ranging from cancer detection to real-time cardiovascular monitoring. Traditional MPI reconstruction relies on either time-consuming calibration (measured system matrix) or model-based simulation of the forward operator. Recent developments have shown the applicability of Chebyshev polynomials to multi-dimensional Lissajous Field-Free Point (FFP) scans. This method is bound to the particular choice of sinusoidal scanning trajectories. In this paper, we present the first reconstruction on real 2D MPI data with a trajectory-independent model-based MPI reconstruction algorithm. We further develop the zero-shot Plug-and-Play (PnP) algorithm of the authors -- with automatic noise level estimation -- to address the present deconvolution problem, leveraging a state-of-the-art denoiser trained on natural images without retraining on MPI-specific data. We evaluate our method on the publicly available 2D FFP MPI dataset ``MPIdata: Equilibrium Model with Anisotropy", featuring scans of six phantoms acquired using a Bruker preclinical scanner. Moreover, we show reconstruction performed on custom data on a 2D scanner with additional high-frequency excitation field and partial data. Our results demonstrate strong reconstruction capabilities across different scanning scenarios -- setting a precedent for general-purpose, flexible model-based MPI reconstruction.
Related papers
- Direct Dual-Energy CT Material Decomposition using Model-based Denoising Diffusion Model [105.95160543743984]
We propose a deep learning procedure called Dual-Energy Decomposition Model-based Diffusion (DEcomp-MoD) for quantitative material decomposition.<n>We show that DEcomp-MoD outperform state-of-the-art unsupervised score-based model and supervised deep learning networks.
arXiv Detail & Related papers (2025-07-24T01:00:06Z) - Polyhedra Encoding Transformers: Enhancing Diffusion MRI Analysis Beyond Voxel and Volumetric Embedding [9.606654786275902]
In this paper, we propose a novel method called Polyhedra Transformer (PE-Transformer) for dMRI, designed specifically to handle spherical signals.<n>Our approach involves projecting an icosahedral unit sphere to resample signals from predetermined directions. These resampled signals are then transformed into embeddings, which are processed by a transformer encoder that incorporates orientational information reflective of the icosahedral structure.
arXiv Detail & Related papers (2025-01-23T03:32:52Z) - Learned Discrepancy Reconstruction and Benchmark Dataset for Magnetic Particle Imaging [3.7898596546142818]
Magnetic Particle Imaging (MPI) is an emerging imaging modality based on the magnetic response of superparamagnetic iron oxide nanoparticles.<n>One key challenge in the MPI image reconstruction task arises from its underlying noise model.<n>We introduce the Learned Discrepancy Approach, a novel learning-based reconstruction method for inverse problems.
arXiv Detail & Related papers (2025-01-09T21:21:06Z) - Re-Visible Dual-Domain Self-Supervised Deep Unfolding Network for MRI Reconstruction [48.30341580103962]
We propose a novel re-visible dual-domain self-supervised deep unfolding network to address these issues.<n>We design a deep unfolding network based on Chambolle and Pock Proximal Point Algorithm (DUN-CP-PPA) to achieve end-to-end reconstruction.<n> Experiments conducted on the fastMRI and IXI datasets demonstrate that our method significantly outperforms state-of-the-art approaches in terms of reconstruction performance.
arXiv Detail & Related papers (2025-01-07T12:29:32Z) - Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1 [51.404644401997736]
We propose a complete framework to remove speckle in polarimetric SAR images using a convolutional neural network.
Experiments show that the proposed approach offers exceptional results in both speckle reduction and resolution preservation.
arXiv Detail & Related papers (2024-08-28T10:07:17Z) - Graph Image Prior for Unsupervised Dynamic Cardiac Cine MRI Reconstruction [10.330083869344445]
We propose a novel scheme for dynamic MRI representation, named Graph Image Prior'' (GIP)
GIP adopts a two-stage generative network in a new modeling methodology, which first employs independent CNNs to recover the image structure for each frame.
A graph convolutional network is utilized for feature fusion and image generation.
arXiv Detail & Related papers (2024-03-23T08:57:46Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
We present a learning method to optimize sub-sampling patterns for compressed sensing multi-coil MRI.
We use a single-step reconstruction based on the posterior mean estimate given by the diffusion model and the MRI measurement process.
Our method requires as few as five training images to learn effective sampling patterns.
arXiv Detail & Related papers (2023-06-05T22:09:06Z) - A Model-data-driven Network Embedding Multidimensional Features for
Tomographic SAR Imaging [5.489791364472879]
We propose a new model-data-driven network to achieve tomoSAR imaging based on multi-dimensional features.
We add two 2D processing modules, both convolutional encoder-decoder structures, to enhance multi-dimensional features of the imaging scene effectively.
Compared with the conventional CS-based FISTA method and DL-based gamma-Net method, the result of our proposed method has better performance on completeness while having decent imaging accuracy.
arXiv Detail & Related papers (2022-11-28T02:01:43Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
We propose a novel model, Multi-modal Gaussian Process Prior Variational Autoencoder (MGP-VAE), to impute one or more missing sub-modalities for a patient scan.
MGP-VAE can leverage the Gaussian Process (GP) prior on the Variational Autoencoder (VAE) to utilize the subjects/patients and sub-modalities correlations.
We show the applicability of MGP-VAE on brain tumor segmentation where either, two, or three of four sub-modalities may be missing.
arXiv Detail & Related papers (2021-07-07T19:06:34Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
coarse parametrisation in propagation distance, position errors and partial coherence frequently menaces the experiment viability.
A modern Deep Learning framework is used to correct autonomously the setup incoherences, thus improving the quality of a ptychography reconstruction.
We tested our system on both synthetic datasets and also on real data acquired at the TwinMic beamline of the Elettra synchrotron facility.
arXiv Detail & Related papers (2021-05-18T10:15:17Z) - Deep image prior for 3D magnetic particle imaging: A quantitative
comparison of regularization techniques on Open MPI dataset [2.2366638308792735]
MPI has a continuously increasing number of potential medical applications.
One prerequisite for successful performance in these applications is a proper solution to the image reconstruction problem.
We investigate a novel reconstruction approach based on a deep image prior, which builds on representing the solution by a deep neural network.
arXiv Detail & Related papers (2020-07-03T10:13:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.