Pseudo Multi-Source Domain Generalization: Bridging the Gap Between Single and Multi-Source Domain Generalization
- URL: http://arxiv.org/abs/2505.23173v1
- Date: Thu, 29 May 2025 07:11:54 GMT
- Title: Pseudo Multi-Source Domain Generalization: Bridging the Gap Between Single and Multi-Source Domain Generalization
- Authors: Shohei Enomoto,
- Abstract summary: Multi-source Domain Generalization (MDG) has shown promise in addressing this challenge by leveraging multiple source domains during training.<n>We propose Pseudo Multi-source Domain Generalization (PMDG), a novel framework that enables the application of sophisticated MDG algorithms in more practical Single-source Domain Generalization settings.
- Score: 1.9580473532948401
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning models often struggle to maintain performance when deployed on data distributions different from their training data, particularly in real-world applications where environmental conditions frequently change. While Multi-source Domain Generalization (MDG) has shown promise in addressing this challenge by leveraging multiple source domains during training, its practical application is limited by the significant costs and difficulties associated with creating multi-domain datasets. To address this limitation, we propose Pseudo Multi-source Domain Generalization (PMDG), a novel framework that enables the application of sophisticated MDG algorithms in more practical Single-source Domain Generalization (SDG) settings. PMDG generates multiple pseudo-domains from a single source domain through style transfer and data augmentation techniques, creating a synthetic multi-domain dataset that can be used with existing MDG algorithms. Through extensive experiments with PseudoDomainBed, our modified version of the DomainBed benchmark, we analyze the effectiveness of PMDG across multiple datasets and architectures. Our analysis reveals several key findings, including a positive correlation between MDG and PMDG performance and the potential of pseudo-domains to match or exceed actual multi-domain performance with sufficient data. These comprehensive empirical results provide valuable insights for future research in domain generalization. Our code is available at https://github.com/s-enmt/PseudoDomainBed.
Related papers
- Multisource Collaborative Domain Generalization for Cross-Scene Remote Sensing Image Classification [57.945437355714155]
Cross-scene image classification aims to transfer prior knowledge of ground materials to annotate regions with different distributions.<n>Existing approaches focus on single-source domain generalization to unseen target domains.<n>We propose a novel multi-source collaborative domain generalization framework (MS-CDG) based on homogeneity and heterogeneity characteristics of multi-source remote sensing data.
arXiv Detail & Related papers (2024-12-05T06:15:08Z) - DIGIC: Domain Generalizable Imitation Learning by Causal Discovery [69.13526582209165]
Causality has been combined with machine learning to produce robust representations for domain generalization.
We make a different attempt by leveraging the demonstration data distribution to discover causal features for a domain generalizable policy.
We design a novel framework, called DIGIC, to identify the causal features by finding the direct cause of the expert action from the demonstration data distribution.
arXiv Detail & Related papers (2024-02-29T07:09:01Z) - Domain-Unified Prompt Representations for Source-Free Domain
Generalization [6.614361539661422]
Domain generalization is a surefire way toward general artificial intelligence.
It is difficult for existing methods to scale to diverse domains in open-world scenarios.
We propose an approach based on large-scale vision-language pretraining models.
arXiv Detail & Related papers (2022-09-29T16:44:09Z) - Adaptive Domain Generalization via Online Disagreement Minimization [17.215683606365445]
Domain Generalization aims to safely transfer a model to unseen target domains.
AdaODM adaptively modifies the source model at test time for different target domains.
Results show AdaODM stably improves the generalization capacity on unseen domains.
arXiv Detail & Related papers (2022-08-03T11:51:11Z) - Compound Domain Generalization via Meta-Knowledge Encoding [55.22920476224671]
We introduce Style-induced Domain-specific Normalization (SDNorm) to re-normalize the multi-modal underlying distributions.
We harness the prototype representations, the centroids of classes, to perform relational modeling in the embedding space.
Experiments on four standard Domain Generalization benchmarks reveal that COMEN exceeds the state-of-the-art performance without the need of domain supervision.
arXiv Detail & Related papers (2022-03-24T11:54:59Z) - Improving Multi-Domain Generalization through Domain Re-labeling [31.636953426159224]
We study the important link between pre-specified domain labels and the generalization performance.
We introduce a general approach for multi-domain generalization, MulDEns, that uses an ERM-based deep ensembling backbone.
We show that MulDEns does not require tailoring the augmentation strategy or the training process specific to a dataset.
arXiv Detail & Related papers (2021-12-17T23:21:50Z) - META: Mimicking Embedding via oThers' Aggregation for Generalizable
Person Re-identification [68.39849081353704]
Domain generalizable (DG) person re-identification (ReID) aims to test across unseen domains without access to the target domain data at training time.
This paper presents a new approach called Mimicking Embedding via oThers' Aggregation (META) for DG ReID.
arXiv Detail & Related papers (2021-12-16T08:06:50Z) - Exploiting Domain-Specific Features to Enhance Domain Generalization [10.774902700296249]
Domain Generalization (DG) aims to train a model, from multiple observed source domains, in order to perform well on unseen target domains.
Prior DG approaches have focused on extracting domain-invariant information across sources to generalize on target domains.
We propose meta-Domain Specific-Domain Invariant (mD) - a novel theoretically sound framework.
arXiv Detail & Related papers (2021-10-18T15:42:39Z) - Open Domain Generalization with Domain-Augmented Meta-Learning [83.59952915761141]
We study a novel and practical problem of Open Domain Generalization (OpenDG)
We propose a Domain-Augmented Meta-Learning framework to learn open-domain generalizable representations.
Experiment results on various multi-domain datasets demonstrate that the proposed Domain-Augmented Meta-Learning (DAML) outperforms prior methods for unseen domain recognition.
arXiv Detail & Related papers (2021-04-08T09:12:24Z) - Dual Distribution Alignment Network for Generalizable Person
Re-Identification [174.36157174951603]
Domain generalization (DG) serves as a promising solution to handle person Re-Identification (Re-ID)
We present a Dual Distribution Alignment Network (DDAN) which handles this challenge by selectively aligning distributions of multiple source domains.
We evaluate our DDAN on a large-scale Domain Generalization Re-ID (DG Re-ID) benchmark.
arXiv Detail & Related papers (2020-07-27T00:08:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.