論文の概要: Transparent AI: The Case for Interpretability and Explainability
- arxiv url: http://arxiv.org/abs/2507.23535v1
- Date: Thu, 31 Jul 2025 13:22:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-01 17:19:09.813624
- Title: Transparent AI: The Case for Interpretability and Explainability
- Title(参考訳): Transparent AI: 解釈可能性と説明可能性
- Authors: Dhanesh Ramachandram, Himanshu Joshi, Judy Zhu, Dhari Gandhi, Lucas Hartman, Ananya Raval,
- Abstract要約: 多様な分野にわたる実践的解釈可能性アプリケーションから学んだ重要な洞察と教訓を提示する。
本稿では、AI成熟度のさまざまな段階において、組織に適した実行可能な戦略と実装ガイダンスを提供する。
- 参考スコア(独自算出の注目度): 0.1505692475853115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As artificial intelligence systems increasingly inform high-stakes decisions across sectors, transparency has become foundational to responsible and trustworthy AI implementation. Leveraging our role as a leading institute in advancing AI research and enabling industry adoption, we present key insights and lessons learned from practical interpretability applications across diverse domains. This paper offers actionable strategies and implementation guidance tailored to organizations at varying stages of AI maturity, emphasizing the integration of interpretability as a core design principle rather than a retrospective add-on.
- Abstract(参考訳): 人工知能システムは、セクター全体にわたる高い意思決定をますます通知するようになっているため、透明性は責任と信頼できるAI実装の基礎となっている。
AI研究を推進し、業界採用を可能にするための指導的機関としての役割を活用することで、さまざまな領域にわたる実践的解釈可能性アプリケーションから学んだ重要な洞察と教訓を提供する。
本稿では、AI成熟度の異なる段階の組織に適した実行可能な戦略と実装ガイダンスを提供し、インタプリタビリティの統合をレトロスペクティブアドオンではなく、コア設計原則として強調する。
関連論文リスト
- ClarifAI: Enhancing AI Interpretability and Transparency through Case-Based Reasoning and Ontology-Driven Approach for Improved Decision-Making [0.0]
ClarifAIは、人工知能(AI)の透明性と解釈可能性を高めるための新しいアプローチである
この論文は、CBRとCBRを組み合わせたクラリファイ理論の基礎を詳述し、徹底的な説明を与えている。
さらに、設計原則とアーキテクチャの青写真について詳しく説明し、CrarifAIがAIの解釈可能性を高める可能性を強調している。
論文 参考訳(メタデータ) (2025-07-15T21:02:28Z) - KERAIA: An Adaptive and Explainable Framework for Dynamic Knowledge Representation and Reasoning [46.85451489222176]
KERAIAはシンボリックナレッジエンジニアリングのための新しいフレームワークとソフトウェアプラットフォームである。
動的で複雑でコンテキストに敏感な環境で知識を表現、推論、実行するという永続的な課題に対処する。
論文 参考訳(メタデータ) (2025-05-07T10:56:05Z) - Evolution of AI in Education: Agentic Workflows [2.1681971652284857]
人工知能(AI)は教育の様々な側面を変えてきた。
大規模言語モデル(LLM)は、自動学習、アセスメント、コンテンツ生成の進歩を推進している。
これらの制限に対処し、より持続可能な技術プラクティスを促進するために、AIエージェントは教育革新のための有望な新しい道として登場した。
論文 参考訳(メタデータ) (2025-04-25T13:44:57Z) - Media and responsible AI governance: a game-theoretic and LLM analysis [61.132523071109354]
本稿では,信頼できるAIシステムを育成する上での,AI開発者,規制当局,ユーザ,メディア間の相互作用について検討する。
進化的ゲーム理論と大言語モデル(LLM)を用いて、異なる規制体制下でこれらのアクター間の戦略的相互作用をモデル化する。
論文 参考訳(メタデータ) (2025-03-12T21:39:38Z) - AI and the Transformation of Accountability and Discretion in Urban Governance [1.9152655229960793]
この研究は洞察を合成し、意思決定プロセスにおける責任あるAI統合のための指針原則を提案する。
分析によると、AIは単に判断を制限したり、強化したりするのではなく、制度レベルで再配布する。
同時に管理の監督を強化し、意思決定の整合性を高め、運用効率を向上させることができる。
論文 参考訳(メタデータ) (2025-02-18T18:11:39Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - Emergent Explainability: Adding a causal chain to neural network
inference [0.0]
本稿では,創発的コミュニケーション(EmCom)による説明可能な人工知能(xAI)の強化のための理論的枠組みを提案する。
我々は、EmComのAIシステムへの新たな統合を探求し、入力と出力の間の従来の連想関係から、より微妙で因果的解釈へのパラダイムシフトを提供する。
本稿は、このアプローチの理論的基盤、潜在的に広い応用、そして、責任と透明なAIシステムに対するニーズの増大と整合性について論じる。
論文 参考訳(メタデータ) (2024-01-29T02:28:39Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
責任AI(Responsible AI)は、企業文化の発展におけるバイアスに対処する重要な性質を強調している。
この論文は、バイアスを理解すること、バイアスを緩和すること、バイアスを説明することの3つの基本的な柱に基づいて構成されている。
オープンソースの原則に従って、アクセス可能なPythonパッケージとして、Bias On DemandとFairViewをリリースしました。
論文 参考訳(メタデータ) (2024-01-13T14:07:09Z) - Predictable Artificial Intelligence [77.1127726638209]
本稿では予測可能なAIのアイデアと課題を紹介する。
それは、現在および将来のAIエコシステムの重要な妥当性指標を予測できる方法を探る。
予測可能性を達成することは、AIエコシステムの信頼、責任、コントロール、アライメント、安全性を促進するために不可欠である、と私たちは主張する。
論文 参考訳(メタデータ) (2023-10-09T21:36:21Z) - A Transparency Index Framework for AI in Education [1.776308321589895]
この研究の主な貢献は、AIを活用した教育技術開発における透明性の重要性を強調することである。
我々は、透明性が、解釈可能性、説明可能性、安全性などの教育における他の倫理的AI次元の実装を可能にすることを実証する。
論文 参考訳(メタデータ) (2022-05-09T10:10:47Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。