Infi-Med: Low-Resource Medical MLLMs with Robust Reasoning Evaluation
- URL: http://arxiv.org/abs/2505.23867v1
- Date: Thu, 29 May 2025 10:31:57 GMT
- Title: Infi-Med: Low-Resource Medical MLLMs with Robust Reasoning Evaluation
- Authors: Zeyu Liu, Zhitian Hou, Yining Di, Kejing Yang, Zhijie Sang, Congkai Xie, Jingwen Yang, Siyuan Liu, Jialu Wang, Chunming Li, Ming Li, Hongxia Yang,
- Abstract summary: We propose Infi-Med, a comprehensive framework for medical large language models (MLLMs)<n>Infi-Med introduces three key innovations: (1) a resource-efficient approach through curating and constructing high-quality supervised fine-tuning datasets with minimal sample requirements; (2) enhanced multimodal reasoning capabilities for cross-modal integration and clinical task understanding; and (3) a systematic evaluation system that assesses model performance across medical modalities and task types.<n>Our experiments demonstrate that Infi-Med achieves state-of-the-art (SOTA) performance in general medical reasoning while maintaining rapid adaptability to clinical scenarios.
- Score: 33.22110638954145
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal large language models (MLLMs) have demonstrated promising prospects in healthcare, particularly for addressing complex medical tasks, supporting multidisciplinary treatment (MDT), and enabling personalized precision medicine. However, their practical deployment faces critical challenges in resource efficiency, diagnostic accuracy, clinical considerations, and ethical privacy. To address these limitations, we propose Infi-Med, a comprehensive framework for medical MLLMs that introduces three key innovations: (1) a resource-efficient approach through curating and constructing high-quality supervised fine-tuning (SFT) datasets with minimal sample requirements, with a forward-looking design that extends to both pretraining and posttraining phases; (2) enhanced multimodal reasoning capabilities for cross-modal integration and clinical task understanding; and (3) a systematic evaluation system that assesses model performance across medical modalities and task types. Our experiments demonstrate that Infi-Med achieves state-of-the-art (SOTA) performance in general medical reasoning while maintaining rapid adaptability to clinical scenarios. The framework establishes a solid foundation for deploying MLLMs in real-world healthcare settings by balancing model effectiveness with operational constraints.
Related papers
- MAM: Modular Multi-Agent Framework for Multi-Modal Medical Diagnosis via Role-Specialized Collaboration [57.98393950821579]
We introduce the Modular Multi-Agent Framework for Multi-Modal Medical Diagnosis (MAM)<n>Inspired by our empirical findings, MAM decomposes the medical diagnostic process into specialized roles: a General Practitioner, Specialist Team, Radiologist, Medical Assistant, and Director.<n>This modular and collaborative framework enables efficient knowledge updates and leverages existing medical LLMs and knowledge bases.
arXiv Detail & Related papers (2025-06-24T17:52:43Z) - Lingshu: A Generalist Foundation Model for Unified Multimodal Medical Understanding and Reasoning [57.873833577058]
We build a multimodal dataset enriched with extensive medical knowledge.<n>We then introduce our medical-specialized MLLM: Lingshu.<n>Lingshu undergoes multi-stage training to embed medical expertise and enhance its task-solving capabilities.
arXiv Detail & Related papers (2025-06-08T08:47:30Z) - Lightweight Clinical Decision Support System using QLoRA-Fine-Tuned LLMs and Retrieval-Augmented Generation [0.0]
This research paper investigates the application of Large Language Models (LLMs) in healthcare.<n>We focus on enhancing medical decision support through Retrieval-Augmented Generation (RAG) integrated with hospital-specific data and fine-tuning using Quantized Low-Rank Adaptation (QLoRA)<n>We touch on the ethical considerations-patient privacy, data security, and the need for rigorous clinical validation-as well as the practical challenges of integrating such systems into real-world healthcare.
arXiv Detail & Related papers (2025-05-06T10:31:54Z) - Med-CoDE: Medical Critique based Disagreement Evaluation Framework [72.42301910238861]
The reliability and accuracy of large language models (LLMs) in medical contexts remain critical concerns.<n>Current evaluation methods often lack robustness and fail to provide a comprehensive assessment of LLM performance.<n>We propose Med-CoDE, a specifically designed evaluation framework for medical LLMs to address these challenges.
arXiv Detail & Related papers (2025-04-21T16:51:11Z) - Performance of Large Language Models in Supporting Medical Diagnosis and Treatment [0.0]
AI-driven systems can analyze vast datasets, assisting clinicians in identifying diseases, recommending treatments, and predicting patient outcomes.<n>This study evaluates the performance of a range of contemporary LLMs, including both open-source and closed-source models, on the 2024 Portuguese National Exam for medical specialty access.
arXiv Detail & Related papers (2025-04-14T16:53:59Z) - Structured Outputs Enable General-Purpose LLMs to be Medical Experts [50.02627258858336]
Large language models (LLMs) often struggle with open-ended medical questions.<n>We propose a novel approach utilizing structured medical reasoning.<n>Our approach achieves the highest Factuality Score of 85.8, surpassing fine-tuned models.
arXiv Detail & Related papers (2025-03-05T05:24:55Z) - LLM-MedQA: Enhancing Medical Question Answering through Case Studies in Large Language Models [18.6994780408699]
Large Language Models (LLMs) face significant challenges in medical question answering.<n>We propose a novel approach incorporating similar case generation within a multi-agent medical question-answering system.<n>Our method capitalizes on the model's inherent medical knowledge and reasoning capabilities, eliminating the need for additional training data.
arXiv Detail & Related papers (2024-12-31T19:55:45Z) - Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
Large language models (LLMs) represent a transformative class of AI tools capable of revolutionizing various aspects of healthcare.
This tutorial aims to equip healthcare professionals with the tools necessary to effectively integrate LLMs into clinical practice.
arXiv Detail & Related papers (2024-10-24T15:41:56Z) - FEDKIM: Adaptive Federated Knowledge Injection into Medical Foundation Models [54.09244105445476]
This study introduces a novel knowledge injection approach, FedKIM, to scale the medical foundation model within a federated learning framework.<n>FedKIM leverages lightweight local models to extract healthcare knowledge from private data and integrates this knowledge into a centralized foundation model.<n>Our experiments across twelve tasks in seven modalities demonstrate the effectiveness of FedKIM in various settings.
arXiv Detail & Related papers (2024-08-17T15:42:29Z) - RJUA-MedDQA: A Multimodal Benchmark for Medical Document Question
Answering and Clinical Reasoning [14.366349078707263]
RJUA-MedDQA is a comprehensive benchmark in the field of medical specialization.
This work introduces RJUA-MedDQA, a comprehensive benchmark in the field of medical specialization.
arXiv Detail & Related papers (2024-02-19T06:57:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.