論文の概要: Exploring Societal Concerns and Perceptions of AI: A Thematic Analysis through the Lens of Problem-Seeking
- arxiv url: http://arxiv.org/abs/2505.23930v1
- Date: Thu, 29 May 2025 18:24:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-02 19:47:52.621789
- Title: Exploring Societal Concerns and Perceptions of AI: A Thematic Analysis through the Lens of Problem-Seeking
- Title(参考訳): AIの社会的懸念と知覚を探る:問題探索のレンズを通してのテーマ分析
- Authors: Naomi Omeonga wa Kayembe,
- Abstract要約: 本研究では,AIとは対照的に人間の知能の特徴を明らかにするために,問題解決から問題解決を区別する新しい概念的枠組みを提案する。
このフレームワークは、AIは効率と最適化において優れているが、接地と人間の認識に固有のエンボディメントの柔軟性から派生したオリエンテーションは欠如している、と強調している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study introduces a novel conceptual framework distinguishing problem-seeking from problem-solving to clarify the unique features of human intelligence in contrast to AI. Problem-seeking refers to the embodied, emotionally grounded process by which humans identify and set goals, while problem-solving denotes the execution of strategies aimed at achieving such predefined objectives. The framework emphasizes that while AI excels at efficiency and optimization, it lacks the orientation derived from experiential grounding and the embodiment flexibility intrinsic to human cognition. To empirically explore this distinction, the research analyzes metadata from 157 YouTube videos discussing AI. Conducting a thematic analysis combining qualitative insights with keyword-based quantitative metrics, this mixed-methods approach uncovers recurring themes in public discourse, including privacy, job displacement, misinformation, optimism, and ethical concerns. The results reveal a dual sentiment: public fascination with AI's capabilities coexists with anxiety and skepticism about its societal implications. The discussion critiques the orthogonality thesis, which posits that intelligence is separable from goal content, and instead argues that human intelligence integrates goal-setting and goal-pursuit. It underscores the centrality of embodied cognition in human reasoning and highlights how AI's limitations come from its current reliance on computational processing. The study advocates for enhancing emotional and digital literacy to foster responsible AI engagement. It calls for reframing public discourse to recognize AI as a tool that augments -- rather than replaces -- human intelligence. By positioning problem seeking at the core of cognition and as a critical dimension of intelligence, this research offers new perspectives on ethically aligned and human-centered AI development.
- Abstract(参考訳): 本研究では,AIとは対照的に人間の知能の特徴を明らかにするために,問題解決から問題解決を区別する新しい概念的枠組みを提案する。
問題解決とは、人間が目標を特定し、設定する、具体化され、感情的に根ざしたプロセスのことであり、問題解決は、そのような事前定義された目的を達成するための戦略の実行を意味する。
このフレームワークは、AIは効率性と最適化において優れているが、経験的基盤と人間の認知に固有のエンボディメントの柔軟性から派生したオリエンテーションを欠いていることを強調している。
この区別を実証的に調べるために、研究はAIについて議論する157のYouTubeビデオのメタデータを分析した。
定性的な洞察とキーワードベースの定量的指標を組み合わせたテーマ分析を行うことで、この混合メソッドアプローチは、プライバシ、仕事の変位、誤情報、楽観主義、倫理的関心など、公共の話題の中で繰り返されるテーマを明らかにする。
この結果は、AIの能力に対する公的な関心と、その社会的意味に関する不安と懐疑とを共存させる、という2つの感情を浮き彫りにしている。
この議論は、知性はゴールコンテンツと分離可能であると仮定する直交論を批判し、人間の知性はゴール設定とゴール選択を統合していると主張している。
人間の推論における認識の具体化の中心性を強調し、AIの限界が現在の計算処理に依存していることから生じることを強調している。
この研究は、責任あるAIエンゲージメントを促進するために感情的およびデジタルリテラシーを強化することを提唱している。
人間の知性を置き換えるのではなく、AIを強化するツールとして認識するために、公の場での議論を控えるよう呼びかけている。
この研究は、認識の核となる問題と知性の重要な側面を位置づけることで、倫理的に整合した人間中心のAI開発に関する新たな視点を提供する。
関連論文リスト
- Aligning Generalisation Between Humans and Machines [74.120848518198]
AI技術は、科学的発見と意思決定において人間を支援することができるが、民主主義と個人を妨害することもある。
AIの責任ある使用と人間-AIチームへの参加は、AIアライメントの必要性をますます示している。
これらの相互作用の重要かつしばしば見落とされがちな側面は、人間と機械が一般化する異なる方法である。
論文 参考訳(メタデータ) (2024-11-23T18:36:07Z) - Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
我々は人間の知恵について知られているものを調べ、そのAIのビジョンをスケッチする。
AIシステムは特にメタ認知に苦しむ。
スマートAIのベンチマーク、トレーニング、実装について論じる。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions [101.67121669727354]
近年のAIの進歩は、AIシステムを意図された目標、倫理的原則、個人とグループの価値に向けて導くことの重要性を強調している。
人間のAIアライメントの明確な定義とスコープの欠如は、このアライメントを達成するための研究領域間の共同作業を妨げる、大きな障害となる。
我々は、2019年から2024年1月までに400以上の論文を体系的にレビューし、HCI(Human-Computer Interaction)、自然言語処理(NLP)、機械学習(ML)といった複数の分野にまたがって紹介する。
論文 参考訳(メタデータ) (2024-06-13T16:03:25Z) - AI Ethics: A Bibliometric Analysis, Critical Issues, and Key Gaps [3.8214695776749013]
この研究は、過去20年間にAI倫理文学の総合的文献計測分析を行った。
彼らは、コリングリッジジレンマを含む7つの重要なAI倫理問題、AIステータスの議論、AIの透明性と説明可能性に関連する課題、プライバシー保護の合併症、正義と公正の考慮、アルゴクラシーと人間の啓発に関する懸念、超知能の問題を提示している。
論文 参考訳(メタデータ) (2024-03-12T21:43:21Z) - Analyzing Character and Consciousness in AI-Generated Social Content: A
Case Study of Chirper, the AI Social Network [0.0]
この研究はAIの振る舞いを包括的に調査し、多様な設定がチャーパーの反応に与える影響を分析している。
一連の認知テストを通じて、この研究はチャーパーズの自己認識とパターン認識の能力を評価する。
この研究の興味深い側面は、チャーパーのハンドルやパーソナリティのタイプがパフォーマンスに与える影響を探ることである。
論文 参考訳(メタデータ) (2023-08-30T15:40:18Z) - FATE in AI: Towards Algorithmic Inclusivity and Accessibility [0.0]
AIにおけるアルゴリズム上の格差、公平性、説明責任、透明性、倫理(FATE)が実装されている。
本研究では、AIによって守られている世界南部地域のFATE関連デシダータ、特に透明性と倫理について検討する。
インクリシティを促進するために、コミュニティ主導の戦略が提案され、責任あるAI設計のための代表データを収集し、キュレートする。
論文 参考訳(メタデータ) (2023-01-03T15:08:10Z) - Relational Artificial Intelligence [5.5586788751870175]
AIは伝統的に合理的な意思決定と結びついているが、すべての面においてAIの社会的影響を理解し、形作るためには、リレーショナルな視点が必要である。
AIに対する合理的なアプローチでは、計算アルゴリズムが人間の介入から独立して意思決定を推進し、バイアスと排除をもたらすことが示されている。
物事のリレーショナルな性質に焦点を当てたリレーショナルアプローチは、AIの倫理的、法的、社会的、文化的、環境的な影響を扱うために必要である。
論文 参考訳(メタデータ) (2022-02-04T15:29:57Z) - Thinking Fast and Slow in AI [38.8581204791644]
本稿では,人間の意思決定の認知理論からインスピレーションを得たAI研究の方向性を提案する。
前提は、AIでまだ不足しているいくつかの人間の能力の原因について洞察を得ることができれば、AIシステムで同様の能力を得ることができるということです。
論文 参考訳(メタデータ) (2020-10-12T20:10:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。