DSR-Bench: Evaluating the Structural Reasoning Abilities of LLMs via Data Structures
- URL: http://arxiv.org/abs/2505.24069v1
- Date: Thu, 29 May 2025 23:24:53 GMT
- Title: DSR-Bench: Evaluating the Structural Reasoning Abilities of LLMs via Data Structures
- Authors: Yu He, Yingxi Li, Colin White, Ellen Vitercik,
- Abstract summary: Large language models (LLMs) are increasingly deployed for real-world tasks that fundamentally involve data manipulation.<n>A core requirement is the ability to perform structural reasoning--that is, to understand and reason about data relationships.<n>We introduce DSR-Bench, a novel benchmark evaluating LLMs' structural reasoning capabilities through data structures.
- Score: 20.596558700597644
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) are increasingly deployed for real-world tasks that fundamentally involve data manipulation. A core requirement across these tasks is the ability to perform structural reasoning--that is, to understand and reason about data relationships. For example, customer requests require a temporal ordering, which can be represented by data structures such as queues. However, existing benchmarks primarily focus on high-level, application-driven evaluations without isolating this fundamental capability. To address this gap, we introduce DSR-Bench, a novel benchmark evaluating LLMs' structural reasoning capabilities through data structures, which provide interpretable representations of data relationships. DSR-Bench includes 20 data structures, 35 operations, and 4,140 problem instances, organized hierarchically for fine-grained analysis of reasoning limitations. Our evaluation pipeline is fully automated and deterministic, eliminating subjective human or model-based judgments. Its synthetic nature also ensures scalability and minimizes data contamination risks. We benchmark nine state-of-the-art LLMs. Our analysis shows that instruction-tuned models struggle with basic multi-attribute and multi-hop reasoning. Furthermore, while reasoning-oriented models perform better, they remain fragile on complex and hybrid structures, with the best model achieving an average score of only 47% on the challenge subset. Crucially, models often perform poorly on multi-dimensional data and natural language task descriptions, highlighting a critical gap for real-world deployment.
Related papers
- LLM-Symbolic Integration for Robust Temporal Tabular Reasoning [69.27153114778748]
We introduce TempTabQA-C, a synthetic dataset designed for systematic and controlled evaluations.<n>This structured approach allows Large Language Models (LLMs) to generate and executesql queries, enhancing generalization and mitigating biases.
arXiv Detail & Related papers (2025-06-06T05:14:04Z) - IDA-Bench: Evaluating LLMs on Interactive Guided Data Analysis [60.32962597618861]
IDA-Bench is a novel benchmark evaluating large language models in multi-round interactive scenarios.<n>Agent performance is judged by comparing its final numerical output to the human-derived baseline.<n>Even state-of-the-art coding agents (like Claude-3.7-thinking) succeed on 50% of the tasks, highlighting limitations not evident in single-turn tests.
arXiv Detail & Related papers (2025-05-23T09:37:52Z) - Structured Prompting and Feedback-Guided Reasoning with LLMs for Data Interpretation [0.0]
Large language models (LLMs) have demonstrated remarkable capabilities in natural language understanding and task generalization.<n>This paper introduces the STROT Framework, a method for structured prompting and feedback-driven transformation logic generation.
arXiv Detail & Related papers (2025-05-03T00:05:01Z) - FRIDA to the Rescue! Analyzing Synthetic Data Effectiveness in Object-Based Common Sense Reasoning for Disaster Response [19.744969357182665]
We introduce a dataset and pipeline to create Field Reasoning and Instruction Decoding Agent (FRIDA) models.<n>In our pipeline, domain experts and linguists combine their knowledge to make high-quality few-shot prompts.<n>We fine-tune several small instruction-tuned models and find that ablated FRIDA models only trained on objects' physical state and function data.
arXiv Detail & Related papers (2025-02-25T18:51:06Z) - Large Language Models Meet Symbolic Provers for Logical Reasoning Evaluation [24.081573908824353]
First-order logic (FOL) reasoning is pivotal for intelligent systems.<n>Existing benchmarks often rely on extensive human annotation or handcrafted templates.<n>We propose a novel framework called ProverGen that synergizes the generative strengths of Large Language Models with the rigor and precision of symbolic provers.
arXiv Detail & Related papers (2025-02-10T15:31:54Z) - TARGA: Targeted Synthetic Data Generation for Practical Reasoning over Structured Data [9.390415313514762]
TARGA is a framework that generates high-relevance synthetic data without manual annotation.<n>It substantially outperforms existing non-fine-tuned methods that utilize close-sourced model.<n>It exhibits superior sample efficiency, robustness, and generalization capabilities under non-I.I.D. settings.
arXiv Detail & Related papers (2024-12-27T09:16:39Z) - StructTest: Benchmarking LLMs' Reasoning through Compositional Structured Outputs [78.84060166851805]
StructTest is a novel benchmark that evaluates large language models (LLMs) on their ability to follow compositional instructions and generate structured outputs.<n> Assessments are conducted deterministically using a rule-based evaluator, which can be easily extended to new tasks and datasets.<n>We demonstrate that StructTest remains challenging even for top-performing models like Deepseek-V3/R1 and GPT-4o.
arXiv Detail & Related papers (2024-12-23T22:08:40Z) - MAmmoTH-VL: Eliciting Multimodal Reasoning with Instruction Tuning at Scale [66.73529246309033]
multimodal large language models (MLLMs) have shown significant potential in a broad range of multimodal tasks.<n>Existing instruction-tuning datasets only provide phrase-level answers without any intermediate rationales.<n>We introduce a scalable and cost-effective method to construct a large-scale multimodal instruction-tuning dataset with rich intermediate rationales.
arXiv Detail & Related papers (2024-12-06T18:14:24Z) - BabelBench: An Omni Benchmark for Code-Driven Analysis of Multimodal and Multistructured Data [61.936320820180875]
Large language models (LLMs) have become increasingly pivotal across various domains.
BabelBench is an innovative benchmark framework that evaluates the proficiency of LLMs in managing multimodal multistructured data with code execution.
Our experimental findings on BabelBench indicate that even cutting-edge models like ChatGPT 4 exhibit substantial room for improvement.
arXiv Detail & Related papers (2024-10-01T15:11:24Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
Long-context language models (LCLMs) have the potential to revolutionize our approach to tasks traditionally reliant on external tools like retrieval systems or databases.
We introduce LOFT, a benchmark of real-world tasks requiring context up to millions of tokens designed to evaluate LCLMs' performance on in-context retrieval and reasoning.
Our findings reveal LCLMs' surprising ability to rival state-of-the-art retrieval and RAG systems, despite never having been explicitly trained for these tasks.
arXiv Detail & Related papers (2024-06-19T00:28:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.