RCCDA: Adaptive Model Updates in the Presence of Concept Drift under a Constrained Resource Budget
- URL: http://arxiv.org/abs/2505.24149v1
- Date: Fri, 30 May 2025 02:49:42 GMT
- Title: RCCDA: Adaptive Model Updates in the Presence of Concept Drift under a Constrained Resource Budget
- Authors: Adam Piaseczny, Md Kamran Chowdhury Shisher, Shiqiang Wang, Christopher G. Brinton,
- Abstract summary: Real-time machine learning algorithms are often faced with the challenge of adapting models to concept drift.<n>Existing solutions often depend on drift-detection methods that produce high computational overhead for resource-constrained environments.<n>We propose RCCDA: a dynamic model update policy that optimize ML training dynamics while ensuring strict compliance to predefined resource constraints.
- Score: 19.391900930310253
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning (ML) algorithms deployed in real-world environments are often faced with the challenge of adapting models to concept drift, where the task data distributions are shifting over time. The problem becomes even more difficult when model performance must be maintained under adherence to strict resource constraints. Existing solutions often depend on drift-detection methods that produce high computational overhead for resource-constrained environments, and fail to provide strict guarantees on resource usage or theoretical performance assurances. To address these shortcomings, we propose RCCDA: a dynamic model update policy that optimizes ML training dynamics while ensuring strict compliance to predefined resource constraints, utilizing only past loss information and a tunable drift threshold. In developing our policy, we analytically characterize the evolution of model loss under concept drift with arbitrary training update decisions. Integrating these results into a Lyapunov drift-plus-penalty framework produces a lightweight policy based on a measurable accumulated loss threshold that provably limits update frequency and cost. Experimental results on three domain generalization datasets demonstrate that our policy outperforms baseline methods in inference accuracy while adhering to strict resource constraints under several schedules of concept drift, making our solution uniquely suited for real-time ML deployments.
Related papers
- Aligning Diffusion Model with Problem Constraints for Trajectory Optimization [0.6629765271909505]
We propose a novel approach that aligns diffusion models explicitly with problem-specific constraints.<n>Our approach is well-suited for integration into the Dynamic Data-driven Application Systems (DDDAS) framework.
arXiv Detail & Related papers (2025-04-01T01:46:05Z) - LeanTTA: A Backpropagation-Free and Stateless Approach to Quantized Test-Time Adaptation on Edge Devices [13.355021314836852]
We present LeanTTA, a novel backpropagation-free and stateless framework for quantized test-time adaptation tailored to edge devices.<n>Our approach minimizes computational costs by dynamically updating normalization statistics without backpropagation.<n>We validate our framework across sensor modalities, demonstrating significant improvements over state-of-the-art TTA methods.
arXiv Detail & Related papers (2025-03-20T06:27:09Z) - Diffusion Predictive Control with Constraints [51.91057765703533]
Diffusion predictive control with constraints (DPCC) is an algorithm for diffusion-based control with explicit state and action constraints.<n>We show through simulations of a robot manipulator that DPCC outperforms existing methods in satisfying novel test-time constraints.
arXiv Detail & Related papers (2024-12-12T15:10:22Z) - Online Resource Allocation for Edge Intelligence with Colocated Model Retraining and Inference [5.6679198251041765]
We introduce an online approximation algorithm, named ORRIC, designed to optimize resource allocation for adaptively balancing accuracy of training model and inference.
The competitive ratio of ORRIC outperforms that of the traditional In-ference-Only paradigm, especially when data persists for a sufficiently lengthy time.
arXiv Detail & Related papers (2024-05-25T03:05:19Z) - Efficiently Training Deep-Learning Parametric Policies using Lagrangian Duality [55.06411438416805]
Constrained Markov Decision Processes (CMDPs) are critical in many high-stakes applications.<n>This paper introduces a novel approach, Two-Stage Deep Decision Rules (TS- DDR) to efficiently train parametric actor policies.<n>It is shown to enhance solution quality and to reduce computation times by several orders of magnitude when compared to current state-of-the-art methods.
arXiv Detail & Related papers (2024-05-23T18:19:47Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
This paper aims to recover the structure of rewards and environment dynamics that underlie observed actions in a fixed, finite set of demonstrations from an expert agent.
Accurate models of expertise in executing a task has applications in safety-sensitive applications such as clinical decision making and autonomous driving.
arXiv Detail & Related papers (2023-02-15T04:14:20Z) - DROMO: Distributionally Robust Offline Model-based Policy Optimization [0.0]
We consider the problem of offline reinforcement learning with model-based control.
We propose distributionally robust offline model-based policy optimization (DROMO)
arXiv Detail & Related papers (2021-09-15T13:25:14Z) - Safe Continuous Control with Constrained Model-Based Policy Optimization [0.0]
We introduce a model-based safe exploration algorithm for constrained high-dimensional control.
We also introduce a practical algorithm that accelerates policy search with model-generated data.
arXiv Detail & Related papers (2021-04-14T15:20:55Z) - COMBO: Conservative Offline Model-Based Policy Optimization [120.55713363569845]
Uncertainty estimation with complex models, such as deep neural networks, can be difficult and unreliable.
We develop a new model-based offline RL algorithm, COMBO, that regularizes the value function on out-of-support state-actions.
We find that COMBO consistently performs as well or better as compared to prior offline model-free and model-based methods.
arXiv Detail & Related papers (2021-02-16T18:50:32Z) - Coordinated Online Learning for Multi-Agent Systems with Coupled
Constraints and Perturbed Utility Observations [91.02019381927236]
We introduce a novel method to steer the agents toward a stable population state, fulfilling the given resource constraints.
The proposed method is a decentralized resource pricing method based on the resource loads resulting from the augmentation of the game's Lagrangian.
arXiv Detail & Related papers (2020-10-21T10:11:17Z) - MOPO: Model-based Offline Policy Optimization [183.6449600580806]
offline reinforcement learning (RL) refers to the problem of learning policies entirely from a large batch of previously collected data.
We show that an existing model-based RL algorithm already produces significant gains in the offline setting.
We propose to modify the existing model-based RL methods by applying them with rewards artificially penalized by the uncertainty of the dynamics.
arXiv Detail & Related papers (2020-05-27T08:46:41Z) - Guided Constrained Policy Optimization for Dynamic Quadrupedal Robot
Locomotion [78.46388769788405]
We introduce guided constrained policy optimization (GCPO), an RL framework based upon our implementation of constrained policy optimization (CPPO)
We show that guided constrained RL offers faster convergence close to the desired optimum resulting in an optimal, yet physically feasible, robotic control behavior without the need for precise reward function tuning.
arXiv Detail & Related papers (2020-02-22T10:15:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.