E^2GraphRAG: Streamlining Graph-based RAG for High Efficiency and Effectiveness
- URL: http://arxiv.org/abs/2505.24226v4
- Date: Fri, 06 Jun 2025 12:11:48 GMT
- Title: E^2GraphRAG: Streamlining Graph-based RAG for High Efficiency and Effectiveness
- Authors: Yibo Zhao, Jiapeng Zhu, Ye Guo, Kangkang He, Xiang Li,
- Abstract summary: We propose E2GraphRAG, a streamlined graph-based RAG framework.<n>E2GraphRAG achieves up to 10 times faster indexing than GraphRAG and 100 times speedup over LightRAG in retrieval.
- Score: 15.829377965705746
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph-based RAG methods like GraphRAG have shown promising global understanding of the knowledge base by constructing hierarchical entity graphs. However, they often suffer from inefficiency and rely on manually pre-defined query modes, limiting practical use. In this paper, we propose E^2GraphRAG, a streamlined graph-based RAG framework that improves both Efficiency and Effectiveness. During the indexing stage, E^2GraphRAG constructs a summary tree with large language models and an entity graph with SpaCy based on document chunks. We then construct bidirectional indexes between entities and chunks to capture their many-to-many relationships, enabling fast lookup during both local and global retrieval. For the retrieval stage, we design an adaptive retrieval strategy that leverages the graph structure to retrieve and select between local and global modes. Experiments show that E^2GraphRAG achieves up to 10 times faster indexing than GraphRAG and 100 times speedup over LightRAG in retrieval while maintaining competitive QA performance.
Related papers
- Graph-R1: Towards Agentic GraphRAG Framework via End-to-end Reinforcement Learning [20.05893083101089]
Graph-R1 is an agentic GraphRAG framework via end-to-end reinforcement learning (RL)<n>It introduces lightweight knowledge hypergraph construction, models retrieval as a multi-turn agent-environment interaction.<n>Experiments on standard RAG datasets show that Graph-R1 outperforms traditional GraphRAG and RL-enhanced RAG methods in reasoning accuracy, retrieval efficiency, and generation quality.
arXiv Detail & Related papers (2025-07-29T15:01:26Z) - GraphRunner: A Multi-Stage Framework for Efficient and Accurate Graph-Based Retrieval [3.792463570467098]
GraphRunner is a novel graph-based retrieval framework that operates in three distinct stages: planning, verification, and execution.<n>It significantly reduces reasoning errors and detects hallucinations before execution.<n>Our evaluation using the GRBench dataset shows that GraphRunner consistently outperforms existing approaches.
arXiv Detail & Related papers (2025-07-11T18:10:01Z) - When to use Graphs in RAG: A Comprehensive Analysis for Graph Retrieval-Augmented Generation [25.508719115522645]
Graph retrieval-augmented generation (GraphRAG) has emerged as a powerful paradigm for enhancing large language models (LLMs) with external knowledge.<n>Recent studies report that GraphRAG frequently underperforms vanilla RAG on many real-world tasks.<n>This raises a critical question: Is GraphRAG really effective, and in which scenarios do graph structures provide measurable benefits for RAG systems?
arXiv Detail & Related papers (2025-06-06T02:37:47Z) - Align-GRAG: Reasoning-Guided Dual Alignment for Graph Retrieval-Augmented Generation [75.9865035064794]
Large language models (LLMs) have demonstrated remarkable capabilities, but still struggle with issues like hallucinations and outdated information.<n>Retrieval-augmented generation (RAG) addresses these issues by grounding LLM outputs in external knowledge with an Information Retrieval (IR) system.<n>We propose Align-GRAG, a novel reasoning-guided dual alignment framework in post-retrieval phrase.
arXiv Detail & Related papers (2025-05-22T05:15:27Z) - NodeRAG: Structuring Graph-based RAG with Heterogeneous Nodes [25.173078967881803]
Retrieval-augmented generation (RAG) empowers large language models to access external and private corpus.<n>Current graph-based RAG approaches seldom prioritize the design of graph structures.<n>Inadequately designed graph not only impede the seamless integration of diverse graph algorithms but also result in workflow inconsistencies.<n>We propose NodeRAG, a graph-centric framework introducing heterogeneous graph structures.
arXiv Detail & Related papers (2025-04-15T18:24:00Z) - GraphRAFT: Retrieval Augmented Fine-Tuning for Knowledge Graphs on Graph Databases [0.0]
GraphRAFT is a retrieve-and-reason framework that finetunes LLMs to generate provably correct Cypher queries.<n>Our method is the first such solution that can be taken off-the-shelf and used on Knowledge Graphs stored in native graph DBs.
arXiv Detail & Related papers (2025-04-07T20:16:22Z) - HyperGraphRAG: Retrieval-Augmented Generation via Hypergraph-Structured Knowledge Representation [21.291102413159752]
We propose HyperGraphRAG, a novel graph-based RAG method that represents n-ary relational facts via hyperedges.<n> Experiments across medicine, agriculture, computer science, and law demonstrate that HyperGraphRAG outperforms both standard RAG and previous graph-based RAG methods in answer accuracy, retrieval efficiency, and generation quality.
arXiv Detail & Related papers (2025-03-27T10:01:16Z) - RGL: A Graph-Centric, Modular Framework for Efficient Retrieval-Augmented Generation on Graphs [58.10503898336799]
We introduce the RAG-on-Graphs Library (RGL), a modular framework that seamlessly integrates the complete RAG pipeline.<n>RGL addresses key challenges by supporting a variety of graph formats and integrating optimized implementations for essential components.<n>Our evaluations demonstrate that RGL not only accelerates the prototyping process but also enhances the performance and applicability of graph-based RAG systems.
arXiv Detail & Related papers (2025-03-25T03:21:48Z) - KET-RAG: A Cost-Efficient Multi-Granular Indexing Framework for Graph-RAG [21.62060252772377]
Graph-RAG constructs a knowledge graph from text chunks to improve retrieval in Large Language Model (LLM)-based question answering.<n>Some existing Graph-RAG systems construct KNN graphs based on text chunk relevance, but this coarse-grained approach fails to capture entity relationships within texts.<n>We propose KET-RAG, a multi-granular indexing framework to ensure a good result accuracy while reducing the indexing cost.
arXiv Detail & Related papers (2025-02-13T13:16:16Z) - An Automatic Graph Construction Framework based on Large Language Models for Recommendation [49.51799417575638]
We introduce AutoGraph, an automatic graph construction framework based on large language models for recommendation.<n>LLMs infer the user preference and item knowledge, which is encoded as semantic vectors.<n>Latent factors are incorporated as extra nodes to link the user/item nodes, resulting in a graph with in-depth global-view semantics.
arXiv Detail & Related papers (2024-12-24T07:51:29Z) - GC-Bench: An Open and Unified Benchmark for Graph Condensation [54.70801435138878]
We develop a comprehensive Graph Condensation Benchmark (GC-Bench) to analyze the performance of graph condensation.
GC-Bench systematically investigates the characteristics of graph condensation in terms of the following dimensions: effectiveness, transferability, and complexity.
We have developed an easy-to-use library for training and evaluating different GC methods to facilitate reproducible research.
arXiv Detail & Related papers (2024-06-30T07:47:34Z) - G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering [61.93058781222079]
We develop a flexible question-answering framework targeting real-world textual graphs.
We introduce the first retrieval-augmented generation (RAG) approach for general textual graphs.
G-Retriever performs RAG over a graph by formulating this task as a Prize-Collecting Steiner Tree optimization problem.
arXiv Detail & Related papers (2024-02-12T13:13:04Z) - Inverse Graph Identification: Can We Identify Node Labels Given Graph
Labels? [89.13567439679709]
Graph Identification (GI) has long been researched in graph learning and is essential in certain applications.
This paper defines a novel problem dubbed Inverse Graph Identification (IGI)
We propose a simple yet effective method that makes the node-level message passing process using Graph Attention Network (GAT) under the protocol of GI.
arXiv Detail & Related papers (2020-07-12T12:06:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.