HyperGraphRAG: Retrieval-Augmented Generation via Hypergraph-Structured Knowledge Representation
- URL: http://arxiv.org/abs/2503.21322v2
- Date: Thu, 22 May 2025 16:34:30 GMT
- Title: HyperGraphRAG: Retrieval-Augmented Generation via Hypergraph-Structured Knowledge Representation
- Authors: Haoran Luo, Haihong E, Guanting Chen, Yandan Zheng, Xiaobao Wu, Yikai Guo, Qika Lin, Yu Feng, Zemin Kuang, Meina Song, Yifan Zhu, Luu Anh Tuan,
- Abstract summary: We propose HyperGraphRAG, a novel graph-based RAG method that represents n-ary relational facts via hyperedges.<n> Experiments across medicine, agriculture, computer science, and law demonstrate that HyperGraphRAG outperforms both standard RAG and previous graph-based RAG methods in answer accuracy, retrieval efficiency, and generation quality.
- Score: 21.291102413159752
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Standard Retrieval-Augmented Generation (RAG) relies on chunk-based retrieval, whereas GraphRAG advances this approach by graph-based knowledge representation. However, existing graph-based RAG approaches are constrained by binary relations, as each edge in an ordinary graph connects only two entities, limiting their ability to represent the n-ary relations (n >= 2) in real-world knowledge. In this work, we propose HyperGraphRAG, a novel hypergraph-based RAG method that represents n-ary relational facts via hyperedges, and consists of knowledge hypergraph construction, retrieval, and generation. Experiments across medicine, agriculture, computer science, and law demonstrate that HyperGraphRAG outperforms both standard RAG and previous graph-based RAG methods in answer accuracy, retrieval efficiency, and generation quality.
Related papers
- Graph-R1: Towards Agentic GraphRAG Framework via End-to-end Reinforcement Learning [20.05893083101089]
Graph-R1 is an agentic GraphRAG framework via end-to-end reinforcement learning (RL)<n>It introduces lightweight knowledge hypergraph construction, models retrieval as a multi-turn agent-environment interaction.<n>Experiments on standard RAG datasets show that Graph-R1 outperforms traditional GraphRAG and RL-enhanced RAG methods in reasoning accuracy, retrieval efficiency, and generation quality.
arXiv Detail & Related papers (2025-07-29T15:01:26Z) - Benchmarking Vector, Graph and Hybrid Retrieval Augmented Generation (RAG) Pipelines for Open Radio Access Networks (ORAN) [0.3999851878220877]
Large Language Models (LLMs) can be specialized to generate xApps and rApps by leveraging specifications and API definitions from the RAN Intelligent Controller (RIC) platform.<n>Retrieval-Augmented Generation (RAG) offers a practical alternative through in-context learning, enabling domain adaptation without full retraining.<n>In this study, we conduct a comparative evaluation of Vector RAG, GraphRAG, and Hybrid GraphRAG using ORAN specifications.
arXiv Detail & Related papers (2025-07-04T14:31:30Z) - When to use Graphs in RAG: A Comprehensive Analysis for Graph Retrieval-Augmented Generation [25.508719115522645]
Graph retrieval-augmented generation (GraphRAG) has emerged as a powerful paradigm for enhancing large language models (LLMs) with external knowledge.<n>Recent studies report that GraphRAG frequently underperforms vanilla RAG on many real-world tasks.<n>This raises a critical question: Is GraphRAG really effective, and in which scenarios do graph structures provide measurable benefits for RAG systems?
arXiv Detail & Related papers (2025-06-06T02:37:47Z) - Align-GRAG: Reasoning-Guided Dual Alignment for Graph Retrieval-Augmented Generation [75.9865035064794]
Large language models (LLMs) have demonstrated remarkable capabilities, but still struggle with issues like hallucinations and outdated information.<n>Retrieval-augmented generation (RAG) addresses these issues by grounding LLM outputs in external knowledge with an Information Retrieval (IR) system.<n>We propose Align-GRAG, a novel reasoning-guided dual alignment framework in post-retrieval phrase.
arXiv Detail & Related papers (2025-05-22T05:15:27Z) - NodeRAG: Structuring Graph-based RAG with Heterogeneous Nodes [25.173078967881803]
Retrieval-augmented generation (RAG) empowers large language models to access external and private corpus.<n>Current graph-based RAG approaches seldom prioritize the design of graph structures.<n>Inadequately designed graph not only impede the seamless integration of diverse graph algorithms but also result in workflow inconsistencies.<n>We propose NodeRAG, a graph-centric framework introducing heterogeneous graph structures.
arXiv Detail & Related papers (2025-04-15T18:24:00Z) - RGL: A Graph-Centric, Modular Framework for Efficient Retrieval-Augmented Generation on Graphs [58.10503898336799]
We introduce the RAG-on-Graphs Library (RGL), a modular framework that seamlessly integrates the complete RAG pipeline.
RGL addresses key challenges by supporting a variety of graph formats and integrating optimized implementations for essential components.
Our evaluations demonstrate that RGL not only accelerates the prototyping process but also enhances the performance and applicability of graph-based RAG systems.
arXiv Detail & Related papers (2025-03-25T03:21:48Z) - GFM-RAG: Graph Foundation Model for Retrieval Augmented Generation [84.41557981816077]
We introduce GFM-RAG, a novel graph foundation model (GFM) for retrieval augmented generation.<n>GFM-RAG is powered by an innovative graph neural network that reasons over graph structure to capture complex query-knowledge relationships.<n>It achieves state-of-the-art performance while maintaining efficiency and alignment with neural scaling laws.
arXiv Detail & Related papers (2025-02-03T07:04:29Z) - Retrieval-Augmented Generation with Graphs (GraphRAG) [84.29507404866257]
Retrieval-augmented generation (RAG) is a powerful technique that enhances downstream task execution by retrieving additional information.<n>Graph, by its intrinsic "nodes connected by edges" nature, encodes massive heterogeneous and relational information.<n>Unlike conventional RAG, the uniqueness of graph-structured data, such as diverse-formatted and domain-specific relational knowledge, poses unique and significant challenges when designing GraphRAG for different domains.
arXiv Detail & Related papers (2024-12-31T06:59:35Z) - HC-GLAD: Dual Hyperbolic Contrastive Learning for Unsupervised Graph-Level Anomaly Detection [32.607141662986635]
We propose a novel Dual Hyperbolic Contrastive Learning for Unsupervised Graph-Level Anomaly Detection (HC-GLAD in short)
To exploit high-order node group information, we construct hypergraphs based on pre-designed gold motifs and subsequently perform hypergraph convolution.
To preserve the hierarchy of real-world graphs, we introduce hyperbolic geometry into this field and conduct both graph and hypergraph embedding learning in hyperbolic space with the hyperboloid model.
arXiv Detail & Related papers (2024-07-02T08:38:32Z) - Hypergraph-enhanced Dual Semi-supervised Graph Classification [14.339207883093204]
We propose a Hypergraph-Enhanced DuAL framework named HEAL for semi-supervised graph classification.
To better explore the higher-order relationships among nodes, we design a hypergraph structure learning to adaptively learn complex node dependencies.
Based on the learned hypergraph, we introduce a line graph to capture the interaction between hyperedges.
arXiv Detail & Related papers (2024-05-08T02:44:13Z) - Hypergraph Transformer for Semi-Supervised Classification [50.92027313775934]
We propose a novel hypergraph learning framework, HyperGraph Transformer (HyperGT)
HyperGT uses a Transformer-based neural network architecture to effectively consider global correlations among all nodes and hyperedges.
It achieves comprehensive hypergraph representation learning by effectively incorporating global interactions while preserving local connectivity patterns.
arXiv Detail & Related papers (2023-12-18T17:50:52Z) - From Hypergraph Energy Functions to Hypergraph Neural Networks [94.88564151540459]
We present an expressive family of parameterized, hypergraph-regularized energy functions.
We then demonstrate how minimizers of these energies effectively serve as node embeddings.
We draw parallels between the proposed bilevel hypergraph optimization, and existing GNN architectures in common use.
arXiv Detail & Related papers (2023-06-16T04:40:59Z) - Hybrid Graph: A Unified Graph Representation with Datasets and
Benchmarks for Complex Graphs [27.24150788635981]
We introduce the concept of hybrid graphs and present the Hybrid Graph Benchmark (HGB)
HGB contains 23 real-world hybrid graph datasets across various domains such as biology, social media, and e-commerce.
We provide an evaluation framework and a supporting framework to facilitate the training and evaluation of Graph Neural Networks (GNNs) on HGB.
arXiv Detail & Related papers (2023-06-08T11:15:34Z) - Graph Generative Model for Benchmarking Graph Neural Networks [73.11514658000547]
We introduce a novel graph generative model that learns and reproduces the distribution of real-world graphs in a privacy-controlled way.
Our model can successfully generate privacy-controlled, synthetic substitutes of large-scale real-world graphs that can be effectively used to benchmark GNN models.
arXiv Detail & Related papers (2022-07-10T06:42:02Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - Hypergraph Convolutional Networks via Equivalency between Hypergraphs
and Undirected Graphs [59.71134113268709]
We present General Hypergraph Spectral Convolution(GHSC), a general learning framework that can handle EDVW and EIVW hypergraphs.
In this paper, we show that the proposed framework can achieve state-of-the-art performance.
Experiments from various domains including social network analysis, visual objective classification, protein learning demonstrate that the proposed framework can achieve state-of-the-art performance.
arXiv Detail & Related papers (2022-03-31T10:46:47Z) - Learnable Hypergraph Laplacian for Hypergraph Learning [34.28748027233654]
HyperGraph Convolutional Neural Networks (HGCNNs) have demonstrated their potential in modeling high-order relations preserved in graph structured data.
We propose the first learning-based method tailored for constructing adaptive hypergraph structure, termed HypERgrAph Laplacian aDaptor (HERALD)
HERALD adaptively optimize the adjacency relationship between hypernodes and hyperedges in an end-to-end manner and thus the task-aware hypergraph is learned.
arXiv Detail & Related papers (2021-06-12T02:07:07Z) - Learnable Hypergraph Laplacian for Hypergraph Learning [34.28748027233654]
HyperGraph Convolutional Neural Networks (HGCNNs) have demonstrated their potential in modeling high-order relations preserved in graph structured data.
We propose the first learning-based method tailored for constructing adaptive hypergraph structure, termed HypERgrAph Laplacian aDaptor (HERALD)
HERALD adaptively optimize the adjacency relationship between hypernodes and hyperedges in an end-to-end manner and thus the task-aware hypergraph is learned.
arXiv Detail & Related papers (2021-06-10T12:37:55Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.