論文の概要: Artificial Empathy: AI based Mental Health
- arxiv url: http://arxiv.org/abs/2506.00081v1
- Date: Fri, 30 May 2025 02:36:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 21:47:32.274917
- Title: Artificial Empathy: AI based Mental Health
- Title(参考訳): AIベースのメンタルヘルス
- Authors: Aditya Naik, Jovi Thomas, Teja Sree, Himavant Reddy,
- Abstract要約: 多くの人は精神疾患に悩まされるが、誰もが専門的な援助を求めたり、メンタルヘルスにアクセスできるわけではない。
AIチャットボットは、精神疾患を持つ人や、誰かと話したい人にとって、ますます行き詰まりになっている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many people suffer from mental health problems but not everyone seeks professional help or has access to mental health care. AI chatbots have increasingly become a go-to for individuals who either have mental disorders or simply want someone to talk to. This paper presents a study on participants who have previously used chatbots and a scenario-based testing of large language model (LLM) chatbots. Our findings indicate that AI chatbots were primarily utilized as a "Five minute therapist" or as a non-judgmental companion. Participants appreciated the anonymity and lack of judgment from chatbots. However, there were concerns about privacy and the security of sensitive information. The scenario-based testing of LLM chatbots highlighted additional issues. Some chatbots were consistently reassuring, used emojis and names to add a personal touch, and were quick to suggest seeking professional help. However, there were limitations such as inconsistent tone, occasional inappropriate responses (e.g., casual or romantic), and a lack of crisis sensitivity, particularly in recognizing red flag language and escalating responses appropriately. These findings can inform both the technology and mental health care industries on how to better utilize AI chatbots to support individuals during challenging emotional periods.
- Abstract(参考訳): 多くの人は精神的な健康問題に悩まされるが、誰もが専門的な援助を求めたり、メンタルヘルスにアクセスできるわけではない。
AIチャットボットは、精神疾患を持つ人や、誰かと話したい人にとって、ますます行き詰まりになっている。
本稿では,これまでチャットボットを使用してきた参加者と,大規模言語モデル(LLM)のシナリオベーステストについて述べる。
以上の結果から,AIチャットボットは主に「5分間セラピスト」として,あるいは非判断的仲間として利用されていたことが示唆された。
参加者はチャットボットの匿名性と判断の欠如を高く評価した。
しかしプライバシーや機密情報のセキュリティには懸念があった。
LLMチャットボットのシナリオベースのテストは、追加の問題を強調した。
一部のチャットボットは、常に安心し、絵文字と名前を使って個人的なタッチを追加し、すぐにプロの助けを求めることを提案した。
しかし、不整合音、時折不適切な反応(カジュアル、ロマンチック)、危機感の欠如、特に赤旗の言語を認識して適切な反応をエスカレートするといった制限があった。
これらの発見は、AIチャットボットをよりよく活用して、挑戦的な感情的な期間に個人を支援する方法について、テクノロジーとメンタルヘルス業界の両方に通知することができる。
関連論文リスト
- The Typing Cure: Experiences with Large Language Model Chatbots for Mental Health Support [32.60242402941811]
重度の苦痛を経験する人々は、メンタルヘルス支援ツールとしてLarge Language Model (LLM)チャットボットをますます使います。
本研究は、世界規模で多様なバックグラウンドを持つ21人の個人に対するインタビューに基づいて、ユーザが独自のサポートロールを作成する方法を分析する。
我々は、治療的アライメントの概念を導入するか、精神的な健康状況に対する治療的価値とAIを連携させる。
論文 参考訳(メタデータ) (2024-01-25T18:08:53Z) - Evaluating Chatbots to Promote Users' Trust -- Practices and Open
Problems [11.427175278545517]
本稿では,チャットボットのテスト実践について概説する。
ギャップをユーザ信頼の追求におけるオープンな問題として認識する。
サービスや製品のパフォーマンス、ユーザの満足度、社会に対する長期的意図しない結果に関する信頼の問題を緩和するための道筋を概説する。
論文 参考訳(メタデータ) (2023-09-09T22:40:30Z) - Chatbots put to the test in math and logic problems: A preliminary
comparison and assessment of ChatGPT-3.5, ChatGPT-4, and Google Bard [68.8204255655161]
曖昧さがなく、プレーンテキストのみで完全に記述され、ユニークな、明確に定義された正しい回答を持つ、30の質問を使用します。
回答は記録され、議論され、その強みと弱点を強調します。
その結果,ChatGPT-4はChatGPT-3.5より優れていた。
論文 参考訳(メタデータ) (2023-05-30T11:18:05Z) - Mental Health Assessment for the Chatbots [39.081479891611664]
否定的な心理的影響を避けるために、健康的な精神的な傾向を持つべきだと論じる。
チャットボットのメンタルヘルスアセスメントを複数確立し,質問紙によるメンタルヘルスアセスメント手法を導入する。
論文 参考訳(メタデータ) (2022-01-14T10:38:59Z) - CheerBots: Chatbots toward Empathy and Emotionusing Reinforcement
Learning [60.348822346249854]
本研究では,複数の共感型チャットボットがユーザの暗黙の感情を理解し,複数の対話のターンに対して共感的に応答する枠組みを提案する。
チャットボットをCheerBotsと呼びます。CheerBotsは検索ベースまたは生成ベースで、深い強化学習によって微調整されます。
共感的態度で反応するため,CheerBotsの学習支援としてシミュレーションエージェントである概念人間モデルを開発し,今後のユーザの感情状態の変化を考慮し,共感を喚起する。
論文 参考訳(メタデータ) (2021-10-08T07:44:47Z) - Put Chatbot into Its Interlocutor's Shoes: New Framework to Learn
Chatbot Responding with Intention [55.77218465471519]
本稿では,チャットボットに人間のような意図を持つための革新的なフレームワークを提案する。
我々のフレームワークには、ガイドロボットと人間の役割を担うインターロケータモデルが含まれていた。
本フレームワークを3つの実験的なセットアップを用いて検討し,4つの異なる指標を用いた誘導ロボットの評価を行い,柔軟性と性能の利点を実証した。
論文 参考訳(メタデータ) (2021-03-30T15:24:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。