論文の概要: Sorrel: A simple and flexible framework for multi-agent reinforcement learning
- arxiv url: http://arxiv.org/abs/2506.00228v1
- Date: Fri, 30 May 2025 21:04:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 01:42:09.165323
- Title: Sorrel: A simple and flexible framework for multi-agent reinforcement learning
- Title(参考訳): Sorrel: マルチエージェント強化学習のためのシンプルで柔軟なフレームワーク
- Authors: Rebekah A. Gelpí, Yibing Ju, Ethan C. Jackson, Yikai Tang, Shon Verch, Claas Voelcker, William A. Cunningham,
- Abstract要約: Sorrelは、新しいマルチエージェント強化学習環境の生成とテストのためのPythonインターフェースである。
本稿では,Sorrelの基本設計思想と特徴について概説する。
- 参考スコア(独自算出の注目度): 1.0051474951635875
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce Sorrel (https://github.com/social-ai-uoft/sorrel), a simple Python interface for generating and testing new multi-agent reinforcement learning environments. This interface places a high degree of emphasis on simplicity and accessibility, and uses a more psychologically intuitive structure for the basic agent-environment loop, making it a useful tool for social scientists to investigate how learning and social interaction leads to the development and change of group dynamics. In this short paper, we outline the basic design philosophy and features of Sorrel.
- Abstract(参考訳): 我々はSorrel (https://github.com/social-ai-uoft/sorrel)を紹介した。
このインターフェースは、シンプルさとアクセシビリティに高い重点を置いており、基本的なエージェント環境ループに対してより心理的に直感的な構造を用いており、社会科学者が学習と社会的相互作用がグループダイナミクスの発達と変化にどう影響するかを調査するのに有用なツールである。
本稿では,Sorrelの基本設計思想と特徴について概説する。
関連論文リスト
- API Agents vs. GUI Agents: Divergence and Convergence [35.28490346033735]
APIとGUIベースの大規模言語モデル(LLM)は、グラフィカルなユーザインターフェースを人間的な方法で操作する。
本稿では,それらの分散と潜在的収束を系統的に解析する。
LLMベースの自動化における継続的なイノベーションは、APIとGUI駆動エージェントの境界線を曖昧にする可能性があることを示唆している。
論文 参考訳(メタデータ) (2025-03-14T04:26:21Z) - Towards Anthropomorphic Conversational AI Part I: A Practical Framework [49.62013440962072]
会話に関わる人間の知性の重要な側面を再現するために設計されたマルチモジュールフレームワークを導入する。
アプローチの第2段階では、これらの会話データは、フィルタリングとラベル付けの後に、強化学習のためのトレーニングおよびテストデータとして機能する。
論文 参考訳(メタデータ) (2025-02-28T03:18:39Z) - Aguvis: Unified Pure Vision Agents for Autonomous GUI Interaction [69.57190742976091]
Aguvisは、自律的なGUIエージェントのためのビジョンベースのフレームワークである。
クロスプラットフォームのインタラクションを標準化し、内部モノローグによる構造化推論を取り入れている。
オフラインおよび実世界のオンラインベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-12-05T18:58:26Z) - Large Language Model-Brained GUI Agents: A Survey [42.82362907348966]
マルチモーダルモデルはGUI自動化の新しい時代を支えてきた。
彼らは自然言語理解、コード生成、視覚処理において例外的な能力を示した。
これらのエージェントはパラダイムシフトを表しており、ユーザーは単純な会話コマンドで複雑なマルチステップタスクを実行できる。
論文 参考訳(メタデータ) (2024-11-27T12:13:39Z) - ROS-LLM: A ROS framework for embodied AI with task feedback and structured reasoning [74.58666091522198]
非専門家による直感的なロボットプログラミングのためのフレームワークを提案する。
ロボットオペレーティングシステム(ROS)からの自然言語のプロンプトと文脈情報を活用する
我々のシステムは,大規模言語モデル (LLM) を統合し,非専門家がチャットインタフェースを通じてシステムにタスク要求を記述できるようにする。
論文 参考訳(メタデータ) (2024-06-28T08:28:38Z) - SocialGFs: Learning Social Gradient Fields for Multi-Agent Reinforcement Learning [58.84311336011451]
マルチエージェント強化学習のための新しい勾配に基づく状態表現を提案する。
オフラインサンプルからソーシャルグラデーションフィールド(SocialGF)を学習するために,デノジングスコアマッチングを採用している。
実際に、SocialGFをMAPPOなど、広く使われているマルチエージェント強化学習アルゴリズムに統合する。
論文 参考訳(メタデータ) (2024-05-03T04:12:19Z) - YAMLE: Yet Another Machine Learning Environment [4.985768723667417]
YAMLEはオープンソースのフレームワークで、機械学習(ML)モデルとメソッドによる迅速なプロトタイピングと実験を容易にする。
YAMLEにはコマンドラインインターフェースと、人気があり保守状態の良いPyTorchベースのライブラリとの統合が含まれている。
YAMLEの目標は、研究者や実践者が既存の実装を素早く構築し比較できる共有エコシステムに成長することだ。
論文 参考訳(メタデータ) (2024-02-09T09:34:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。