論文の概要: Improving Protein Sequence Design through Designability Preference Optimization
- arxiv url: http://arxiv.org/abs/2506.00297v1
- Date: Fri, 30 May 2025 23:02:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 21:47:32.684075
- Title: Improving Protein Sequence Design through Designability Preference Optimization
- Title(参考訳): 設計性選好最適化によるタンパク質配列設計の改善
- Authors: Fanglei Xue, Andrew Kubaney, Zhichun Guo, Joseph K. Min, Ge Liu, Yi Yang, David Baker,
- Abstract要約: 我々は、高い設計性に向けてシーケンス生成を操ることで、トレーニング目標を再定義する。
ResiDPO(Residue-level Designability Preference Optimization)を導入する。
これにより、すでにうまく機能している領域を保存しながら、設計性を直接改善することができる。
- 参考スコア(独自算出の注目度): 22.037870784317885
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Protein sequence design methods have demonstrated strong performance in sequence generation for de novo protein design. However, as the training objective was sequence recovery, it does not guarantee designability--the likelihood that a designed sequence folds into the desired structure. To bridge this gap, we redefine the training objective by steering sequence generation toward high designability. To do this, we integrate Direct Preference Optimization (DPO), using AlphaFold pLDDT scores as the preference signal, which significantly improves the in silico design success rate. To further refine sequence generation at a finer, residue-level granularity, we introduce Residue-level Designability Preference Optimization (ResiDPO), which applies residue-level structural rewards and decouples optimization across residues. This enables direct improvement in designability while preserving regions that already perform well. Using a curated dataset with residue-level annotations, we fine-tune LigandMPNN with ResiDPO to obtain EnhancedMPNN, which achieves a nearly 3-fold increase in in silico design success rate (from 6.56% to 17.57%) on a challenging enzyme design benchmark.
- Abstract(参考訳): タンパク質配列設計法は、デノボタンパク質設計のための配列生成において強い性能を示した。
しかし、トレーニングの目的はシーケンスの回復であり、設計されたシーケンスが望ましい構造に折り畳まれる可能性を保証するものではない。
このギャップを埋めるために、我々は、高い設計性に向けてシーケンス生成を操り、トレーニング目標を再定義する。
そこで我々は,AlphaFold pLDDTスコアを選好信号として用いた直接選好最適化(DPO)を統合し,シリコ設計の成功率を大幅に向上させる。
より微細で残差レベルの粒度でのシーケンス生成をさらに洗練するために,残差レベルの構造的報酬を適用し,残差間のデカップリング最適化を行うResidue-level Designability Preference Optimization (ResiDPO)を導入する。
これにより、すでにうまく機能している領域を保存しながら、設計性を直接改善することができる。
残基レベルのアノテーションを持つキュレートデータセットを用いて、ResiDPOとLigandMPNNを微調整してEnhancedMPNNを得る。これは、難しい酵素設計ベンチマークにおいて、シリコ設計の成功率(6.56%から17.57%)が約3倍に増加する。
関連論文リスト
- Protein Inverse Folding From Structure Feedback [78.27854221882572]
本稿では,タンパク質の折りたたみモデルからのフィードバックを用いて,逆折りたたみモデルを微調整する手法を提案する。
CATH 4.2 テストセットの結果,DPO の微調整により平均 TM-Score が大幅に向上することが示された。
論文 参考訳(メタデータ) (2025-06-03T16:02:12Z) - Reward-Guided Iterative Refinement in Diffusion Models at Test-Time with Applications to Protein and DNA Design [87.58981407469977]
進化的アルゴリズムにインスパイアされた拡散モデルを用いた推論時間報酬最適化のための新しいフレームワークを提案する。
当社のアプローチでは,各イテレーションにおける2つのステップ – ノイズ発生と報酬誘導という,反復的な改善プロセスを採用しています。
論文 参考訳(メタデータ) (2025-02-20T17:48:45Z) - Progressive Fine-to-Coarse Reconstruction for Accurate Low-Bit Post-Training Quantization in Vision Transformers [13.316135182889296]
後トレーニング量子化(PTQ)は視覚変換器(ViT)の圧縮に広く採用されている。
低ビット表現に量子化されると、完全精度の表現に比べて大きな性能低下がしばしば起こる。
低ビット量子化ビジョントランスの性能を大幅に向上させるPFCR法を提案する。
論文 参考訳(メタデータ) (2024-12-19T08:38:59Z) - Improving Inverse Folding for Peptide Design with Diversity-regularized Direct Preference Optimization [33.131551374836775]
逆折り畳みモデルは、望ましい参照構造に折り畳むアミノ酸配列を予測する。
メッセージパッシングエンコーダデコーダモデルであるProteinMPNNは、参照構造から新しいシーケンスを確実に生成するように訓練されている。
しかし、ペプチドに適用すると、これらのモデルは参照構造に折りたたみしない反復配列を生成する傾向がある。
論文 参考訳(メタデータ) (2024-10-25T11:04:02Z) - A novel design update framework for topology optimization with quantum annealing: Application to truss and continuum structures [0.0]
本稿では,トポロジ最適化のための新しい設計更新戦略を反復的最適化として提案する。
鍵となる貢献は、トラスと連続体構造の両方に適用可能な、設計更新器の概念を量子アニールに組み込むことである。
その結果,提案フレームワークはベンチマーク結果に類似した最適なトポロジを見出すことができた。
論文 参考訳(メタデータ) (2024-06-27T02:07:38Z) - Decoupled Sequence and Structure Generation for Realistic Antibody Design [45.72237864940556]
主要なパラダイムは、モデルに抗体配列と構造を候補として共同で生成するように訓練することである。
本稿では, 配列生成と構造予測を分離した抗体配列構造デカップリング(ASSD)フレームワークを提案する。
ASSDは様々な抗体設計実験で性能が向上し、合成に基づく目的は非自己回帰モデルのトークン反復を軽減した。
論文 参考訳(メタデータ) (2024-02-08T13:02:05Z) - Protein Design with Guided Discrete Diffusion [67.06148688398677]
タンパク質設計における一般的なアプローチは、生成モデルと条件付きサンプリングのための識別モデルを組み合わせることである。
離散拡散モデルのためのガイダンス手法であるdiffusioN Optimized Smpling (NOS)を提案する。
NOSは、構造に基づく手法の重要な制限を回避し、シーケンス空間で直接設計を行うことができる。
論文 参考訳(メタデータ) (2023-05-31T16:31:24Z) - Designing Biological Sequences via Meta-Reinforcement Learning and
Bayesian Optimization [68.28697120944116]
メタ強化学習を用いて自己回帰生成モデルを訓練し、選択のための有望なシーケンスを提案する。
我々は,データのサブセットのサンプリングによって誘導されるMDPの分布に対する最適ポリシーを求める問題として,この問題を提起する。
このようなアンサンブルに対するメタラーニングは,報酬の過小評価に対して頑健であり,競争的な結果が得られることを示す。
論文 参考訳(メタデータ) (2022-09-13T18:37:27Z) - EBM-Fold: Fully-Differentiable Protein Folding Powered by Energy-based
Models [53.17320541056843]
本研究では,データ駆動型生成ネットワークを用いたタンパク質構造最適化手法を提案する。
EBM-Foldアプローチは,従来のロゼッタ構造最適化ルーチンと比較して,高品質なデコイを効率よく生成できる。
論文 参考訳(メタデータ) (2021-05-11T03:40:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。