A Systematic Review of Metaheuristics-Based and Machine Learning-Driven Intrusion Detection Systems in IoT
- URL: http://arxiv.org/abs/2506.00377v2
- Date: Tue, 03 Jun 2025 00:53:02 GMT
- Title: A Systematic Review of Metaheuristics-Based and Machine Learning-Driven Intrusion Detection Systems in IoT
- Authors: Mohammad Shamim Ahsan, Salekul Islam, Swakkhar Shatabda,
- Abstract summary: We present a comprehensive and systematic review of applications of metaheuristics algorithms in developing a machine learning-based intrusion detection system.<n>A significant contribution of this study is the discovery of hidden correlations between these optimization techniques and machine learning models integrated with state-of-the-art IoT-IDSs.
- Score: 2.8265531928694116
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The widespread adoption of the Internet of Things (IoT) has raised a new challenge for developers since it is prone to known and unknown cyberattacks due to its heterogeneity, flexibility, and close connectivity. To defend against such security breaches, researchers have focused on building sophisticated intrusion detection systems (IDSs) using machine learning (ML) techniques. Although these algorithms notably improve detection performance, they require excessive computing power and resources, which are crucial issues in IoT networks considering the recent trends of decentralized data processing and computing systems. Consequently, many optimization techniques have been incorporated with these ML models. Specifically, a special category of optimizer adopted from the behavior of living creatures and different aspects of natural phenomena, known as metaheuristic algorithms, has been a central focus in recent years and brought about remarkable results. Considering this vital significance, we present a comprehensive and systematic review of various applications of metaheuristics algorithms in developing a machine learning-based IDS, especially for IoT. A significant contribution of this study is the discovery of hidden correlations between these optimization techniques and machine learning models integrated with state-of-the-art IoT-IDSs. In addition, the effectiveness of these metaheuristic algorithms in different applications, such as feature selection, parameter or hyperparameter tuning, and hybrid usages are separately analyzed. Moreover, a taxonomy of existing IoT-IDSs is proposed. Furthermore, we investigate several critical issues related to such integration. Our extensive exploration ends with a discussion of promising optimization algorithms and technologies that can enhance the efficiency of IoT-IDSs.
Related papers
- Machine-Learning-Assisted Photonic Device Development: A Multiscale Approach from Theory to Characterization [80.82828320306464]
Photonic device development (PDD) has achieved remarkable success in designing and implementing new devices for controlling light across various wavelengths, scales, and applications.<n>PDD is an iterative, five-step process that consists of: i.e. deriving device behavior from design parameters, ii. simulating device performance, iv. fabricating the optimal device, and v. measuring device performance.<n>PDD suffers from large optimization landscapes, uncertainties in structural or optical characterization, and difficulties in implementing robust fabrication processes.<n>In this review, we present a comprehensive perspective on these methods to enable machine-learning-assisted PDD
arXiv Detail & Related papers (2025-06-24T23:32:54Z) - A Multi-Step Comparative Framework for Anomaly Detection in IoT Data Streams [0.9208007322096533]
Internet of Things (IoT) devices have introduced critical security challenges, underscoring the need for accurate anomaly detection.<n>This paper presents a multi-step evaluation framework assessing the combined impact of preprocessing choices on three machine learning algorithms.<n> Experiments on the IoTID20 dataset shows that GBoosting consistently delivers superior accuracy across preprocessing configurations.
arXiv Detail & Related papers (2025-05-22T16:28:22Z) - Edge-Cloud Collaborative Computing on Distributed Intelligence and Model Optimization: A Survey [59.52058740470727]
Edge-cloud collaborative computing (ECCC) has emerged as a pivotal paradigm for addressing the computational demands of modern intelligent applications.<n>Recent advancements in AI, particularly deep learning and large language models (LLMs), have dramatically enhanced the capabilities of these distributed systems.<n>This survey provides a structured tutorial on fundamental architectures, enabling technologies, and emerging applications.
arXiv Detail & Related papers (2025-05-03T13:55:38Z) - Hybrid Machine Learning Models for Intrusion Detection in IoT: Leveraging a Real-World IoT Dataset [0.0]
Intrusion Detection Systems (IDS) are crucial for mitigating these threats.<n>Recent advancements in Machine Learning (ML) offer promising avenues for improvement.<n>This research explores a hybrid approach, combining several standalone ML models.
arXiv Detail & Related papers (2025-02-17T23:41:10Z) - A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
Large-scale Mixture of Experts (MoE) models offer enhanced model capacity and computational efficiency through conditional computation.<n> deploying and running inference on these models presents significant challenges in computational resources, latency, and energy efficiency.<n>This survey analyzes optimization techniques for MoE models across the entire system stack.
arXiv Detail & Related papers (2024-12-18T14:11:15Z) - Leveraging Conversational Generative AI for Anomaly Detection in Digital Substations [0.0]
The research employs advanced performance metrics to conduct a comparative assessment between the proposed AD and HITL-based AD frameworks.<n>This approach presents a promising solution for enhancing the reliability of power system operations in the face of evolving cybersecurity challenges.
arXiv Detail & Related papers (2024-11-09T18:38:35Z) - Impacts of Data Preprocessing and Hyperparameter Optimization on the Performance of Machine Learning Models Applied to Intrusion Detection Systems [0.8388591755871736]
Intrusion Detection Systems (IDS) have been continuously improved.
Many of them incorporate machine learning (ML) techniques to identify threats.
This article aims to present a study that fills this research gap.
arXiv Detail & Related papers (2024-07-15T14:30:25Z) - Enhancing IoT Security: A Novel Feature Engineering Approach for ML-Based Intrusion Detection Systems [1.749521391198341]
The integration of Internet of Things (IoT) applications in our daily lives has led to a surge in data traffic, posing significant security challenges.
This paper focuses on improving the effectiveness of ML-based IDS at the edge level by introducing a novel method to find a balanced trade-off between cost and accuracy.
arXiv Detail & Related papers (2024-04-29T21:26:18Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - An Explainable Ensemble-based Intrusion Detection System for Software-Defined Vehicle Ad-hoc Networks [0.0]
In this study, we explore the detection of cyber threats in vehicle networks through ensemble-based machine learning.
We propose a model that uses Random Forest and CatBoost as our main investigators, with Logistic Regression used to then reason on their outputs to make a final decision.
We observe that our approach improves classification accuracy, and results in fewer misclassifications compared to previous works.
arXiv Detail & Related papers (2023-12-08T10:39:18Z) - AI-Empowered Hybrid MIMO Beamforming [85.48860461696417]
Hybrid multiple-input multiple-output (MIMO) systems implement part of their beamforming in analog and part in digital.
Recent years have witnessed a growing interest in using data-aided artificial intelligence (AI) tools for hybrid beamforming design.
This article reviews candidate strategies to leverage data to improve real-time hybrid beamforming design.
arXiv Detail & Related papers (2023-03-03T06:04:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.