論文の概要: Slow Feature Analysis as Variational Inference Objective
- arxiv url: http://arxiv.org/abs/2506.00580v1
- Date: Sat, 31 May 2025 14:29:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 21:47:33.212375
- Title: Slow Feature Analysis as Variational Inference Objective
- Title(参考訳): 変分推論対象としてのスロー特徴解析
- Authors: Merlin Schüler, Laurenz Wiskott,
- Abstract要約: 本研究は, 変分推論のレンズを通して, Slow Feature Analysis (SFA) の確率論的解釈を示す。
古典的なスローネスの目標を変分フレームワークで再放送する。
スローネス最適化の観点から、なぜリコンストラクション損失がSFAにおける情報性を保証する制約の役割を担っているのか、という議論を提示します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work presents a novel probabilistic interpretation of Slow Feature Analysis (SFA) through the lens of variational inference. Unlike prior formulations that recover linear SFA from Gaussian state-space models with linear emissions, this approach relaxes the key constraint of linearity. While it does not lead to full equivalence to non-linear SFA, it recasts the classical slowness objective in a variational framework. Specifically, it allows the slowness objective to be interpreted as a regularizer to a reconstruction loss. Furthermore, we provide arguments, why -- from the perspective of slowness optimization -- the reconstruction loss takes on the role of the constraints that ensure informativeness in SFA. We conclude with a discussion of potential new research directions.
- Abstract(参考訳): 本研究は, 変分推論のレンズを通して, Slow Feature Analysis (SFA) の確率論的解釈を示す。
ガウス状態空間モデルから線型SFAをリカバリする以前の定式化とは異なり、このアプローチは線形性の鍵となる制約を緩和する。
非線形SFAと完全同値ではないが、変分フレームワークにおいて古典的スローネスの目的を再放送する。
具体的には、リコンストラクション損失に対するレギュレータとして、スローネス目標を解釈することができる。
さらに、低速最適化の観点から、SFAにおける情報性を保証する制約の役割を再構築損失が負う理由についても論じる。
我々は新たな研究の方向性について論じる。
関連論文リスト
- Stability Bounds for the Unfolded Forward-Backward Algorithm [13.537414663819971]
劣化演算子が線形で知られている逆問題を解決するために設計されたニューラルネットワークアーキテクチャを考察する。
入力摂動に対する逆法のロバスト性は理論的に解析される。
我々の研究の重要な新規性は、そのバイアスの摂動に対する提案されたネットワークの堅牢性を調べることである。
論文 参考訳(メタデータ) (2024-12-23T11:55:41Z) - Bayesian Inference for Consistent Predictions in Overparameterized Nonlinear Regression [0.0]
本研究では,ベイズフレームワークにおける過パラメータ化非線形回帰の予測特性について検討した。
リプシッツ連続活性化関数を持つ一般化線形および単一ニューロンモデルに対して後部収縮が成立する。
提案手法は数値シミュレーションと実データアプリケーションを用いて検証した。
論文 参考訳(メタデータ) (2024-04-06T04:22:48Z) - On the Dynamics Under the Unhinged Loss and Beyond [104.49565602940699]
我々は、閉形式力学を解析するための数学的機会を提供する、簡潔な損失関数であるアンヒンジド・ロスを導入する。
アンヒンジされた損失は、時間変化学習率や特徴正規化など、より実践的なテクニックを検討することができる。
論文 参考訳(メタデータ) (2023-12-13T02:11:07Z) - Learning Dynamics in Linear VAE: Posterior Collapse Threshold,
Superfluous Latent Space Pitfalls, and Speedup with KL Annealing [0.0]
変分オートエンコーダ (VAEs) は、変分後部はしばしば前と密接に整合する悪名高い問題に直面している。
本研究では,極小VAEにおける学習力学の理論解析を行った。
論文 参考訳(メタデータ) (2023-10-24T01:20:27Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
本稿では,ニューラルネットワークトレーニングを安定化(大規模)するための原理的手法として,線形アヘッドの理論解析を提案する。
最適化過程の不安定性は、しばしば損失ランドスケープの非単調性によって引き起こされるものであり、非拡張作用素の理論を活用することによって線型性がいかに役立つかを示す。
論文 参考訳(メタデータ) (2023-10-20T12:45:12Z) - Stability and Generalization Analysis of Gradient Methods for Shallow
Neural Networks [59.142826407441106]
本稿では,アルゴリズム安定性の概念を活用して,浅層ニューラルネットワーク(SNN)の一般化挙動について検討する。
我々は、SNNを訓練するために勾配降下(GD)と勾配降下(SGD)を考慮する。
論文 参考訳(メタデータ) (2022-09-19T18:48:00Z) - Towards Understanding Generalization via Decomposing Excess Risk
Dynamics [13.4379473119565]
一般化力学を解析してアルゴリズム依存境界(安定性など)を導出する。
ニューラルネットは、ノイズの嵌合時に緩やかな収束率を示すという観測から着想を得て、余剰リスクダイナミクスを分解することを提案する。
分解の枠組みの下では、新しい境界は安定性に基づく境界と一様収束境界よりも理論的および経験的証拠とよく一致している。
論文 参考訳(メタデータ) (2021-06-11T03:42:45Z) - Neural Dynamic Mode Decomposition for End-to-End Modeling of Nonlinear
Dynamics [49.41640137945938]
ニューラルネットワークに基づくリフト関数を推定するためのニューラルダイナミックモード分解法を提案する。
提案手法により,予測誤差はニューラルネットワークとスペクトル分解によって逆伝搬される。
提案手法の有効性を,固有値推定と予測性能の観点から実証した。
論文 参考訳(メタデータ) (2020-12-11T08:34:26Z) - Lipschitz Recurrent Neural Networks [100.72827570987992]
我々のリプシッツ再帰ユニットは、他の連続時間RNNと比較して、入力やパラメータの摂動に対してより堅牢であることを示す。
実験により,Lipschitz RNNは,ベンチマークタスクにおいて,既存のリカレントユニットよりも優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2020-06-22T08:44:52Z) - On Learning Rates and Schr\"odinger Operators [105.32118775014015]
本稿では,学習率の影響に関する一般的な理論的分析を行う。
学習速度は、幅広い非ニューラルクラス関数に対してゼロとなる傾向にある。
論文 参考訳(メタデータ) (2020-04-15T09:52:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。