Projection Pursuit Density Ratio Estimation
- URL: http://arxiv.org/abs/2506.00866v1
- Date: Sun, 01 Jun 2025 07:15:07 GMT
- Title: Projection Pursuit Density Ratio Estimation
- Authors: Meilin Wang, Wei Huang, Mingming Gong, Zheng Zhang,
- Abstract summary: Density ratio estimation (DRE) is a paramount task in machine learning, for its broad applications across multiple domains.<n>Parametric methods for estimating the density ratio possibly lead to biased results if models are misspecified.<n>Conventional non-parametric methods suffer from the curse of dimensionality when the dimension of data is large.<n>We propose a novel approach for DRE based on the projection pursuit approximation.
- Score: 44.71752951218575
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Density ratio estimation (DRE) is a paramount task in machine learning, for its broad applications across multiple domains, such as covariate shift adaptation, causal inference, independence tests and beyond. Parametric methods for estimating the density ratio possibly lead to biased results if models are misspecified, while conventional non-parametric methods suffer from the curse of dimensionality when the dimension of data is large. To address these challenges, in this paper, we propose a novel approach for DRE based on the projection pursuit (PP) approximation. The proposed method leverages PP to mitigate the impact of high dimensionality while retaining the model flexibility needed for the accuracy of DRE. We establish the consistency and the convergence rate for the proposed estimator. Experimental results demonstrate that our proposed method outperforms existing alternatives in various applications.
Related papers
- Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
We propose an approximate Bayesian method for quantifying the total uncertainty in inverse PDE solutions obtained with machine learning surrogate models.
We test the proposed framework by comparing it with the iterative ensemble smoother and deep ensembling methods for a non-linear diffusion equation.
arXiv Detail & Related papers (2024-08-20T19:06:02Z) - A variational Bayes approach to debiased inference for low-dimensional parameters in high-dimensional linear regression [2.7498981662768536]
We propose a scalable variational Bayes method for statistical inference in sparse linear regression.
Our approach relies on assigning a mean-field approximation to the nuisance coordinates.
This requires only a preprocessing step and preserves the computational advantages of mean-field variational Bayes.
arXiv Detail & Related papers (2024-06-18T14:27:44Z) - Embedding Trajectory for Out-of-Distribution Detection in Mathematical Reasoning [50.84938730450622]
We propose a trajectory-based method TV score, which uses trajectory volatility for OOD detection in mathematical reasoning.
Our method outperforms all traditional algorithms on GLMs under mathematical reasoning scenarios.
Our method can be extended to more applications with high-density features in output spaces, such as multiple-choice questions.
arXiv Detail & Related papers (2024-05-22T22:22:25Z) - Variational Bayesian surrogate modelling with application to robust design optimisation [0.9626666671366836]
Surrogate models provide a quick-to-evaluate approximation to complex computational models.
We consider Bayesian inference for constructing statistical surrogates with input uncertainties and dimensionality reduction.
We demonstrate intrinsic and robust structural optimisation problems where cost functions depend on a weighted sum of the mean and standard deviation of model outputs.
arXiv Detail & Related papers (2024-04-23T09:22:35Z) - Partially factorized variational inference for high-dimensional mixed models [0.0]
Variational inference is a popular way to perform such computations, especially in the Bayesian context.<n>We show that standard mean-field variational inference dramatically underestimates posterior uncertainty in high-dimensions.<n>We then show how appropriately relaxing the mean-field assumption leads to methods whose uncertainty quantification does not deteriorate in high-dimensions.
arXiv Detail & Related papers (2023-12-20T16:12:37Z) - Variable Importance Matching for Causal Inference [73.25504313552516]
We describe a general framework called Model-to-Match that achieves these goals.
Model-to-Match uses variable importance measurements to construct a distance metric.
We operationalize the Model-to-Match framework with LASSO.
arXiv Detail & Related papers (2023-02-23T00:43:03Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - LIDL: Local Intrinsic Dimension Estimation Using Approximate Likelihood [10.35315334180936]
We propose a novel approach to the problem: Local Intrinsic Dimension estimation using approximate Likelihood (LIDL)
Our method relies on an arbitrary density estimation method as its subroutine and hence tries to sidestep the dimensionality challenge.
We show that LIDL yields competitive results on the standard benchmarks for this problem and that it scales to thousands of dimensions.
arXiv Detail & Related papers (2022-06-29T19:47:46Z) - Wasserstein Distributionally Robust Estimation in High Dimensions: Performance Analysis and Optimal Hyperparameter Tuning [2.4578723416255754]
Distributionally robust optimization (DRO) has become a powerful framework for estimation under uncertainty.<n>We propose a DRO-based method for linear regression and address a central question: how to optimally choose the robustness radius.<n>We show that our method achieves the same effect as cross-validation, but at a fraction of the computational cost.
arXiv Detail & Related papers (2022-06-27T13:02:59Z) - Deep Dimension Reduction for Supervised Representation Learning [51.10448064423656]
We propose a deep dimension reduction approach to learning representations with essential characteristics.
The proposed approach is a nonparametric generalization of the sufficient dimension reduction method.
We show that the estimated deep nonparametric representation is consistent in the sense that its excess risk converges to zero.
arXiv Detail & Related papers (2020-06-10T14:47:43Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
We propose a generic and efficient segmentation framework to construct ensemble segmentation models.
In the proposed method, ensemble models can be efficiently generated by using the layer selection method.
We also devise a new pixel-wise uncertainty loss, which improves the predictive performance.
arXiv Detail & Related papers (2020-05-21T16:08:38Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
Doubly-robust cross-fit estimators have been proposed to yield better statistical properties.
We conducted a simulation study to assess the performance of several estimators for the average causal effect (ACE)
When used with machine learning, the doubly-robust cross-fit estimators substantially outperformed all of the other estimators in terms of bias, variance, and confidence interval coverage.
arXiv Detail & Related papers (2020-04-21T23:09:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.