Towards Edge-Based Idle State Detection in Construction Machinery Using Surveillance Cameras
- URL: http://arxiv.org/abs/2506.00904v1
- Date: Sun, 01 Jun 2025 08:43:33 GMT
- Title: Towards Edge-Based Idle State Detection in Construction Machinery Using Surveillance Cameras
- Authors: Xander Küpers, Jeroen Klein Brinke, Rob Bemthuis, Ozlem Durmaz Incel,
- Abstract summary: Underused construction machinery leads to increased operational costs and project delays.<n>This paper presents the Edge-IMI framework for detecting idle construction machinery.<n>The proposed solution consists of three components: object detection, tracking, and idle state identification.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The construction industry faces significant challenges in optimizing equipment utilization, as underused machinery leads to increased operational costs and project delays. Accurate and timely monitoring of equipment activity is therefore key to identifying idle periods and improving overall efficiency. This paper presents the Edge-IMI framework for detecting idle construction machinery, specifically designed for integration with surveillance camera systems. The proposed solution consists of three components: object detection, tracking, and idle state identification, which are tailored for execution on resource-constrained, CPU-based edge computing devices. The performance of Edge-IMI is evaluated using a combined dataset derived from the ACID and MOCS benchmarks. Experimental results confirm that the object detector achieves an F1 score of 71.75%, indicating robust real-world detection capabilities. The logistic regression-based idle identification module reliably distinguishes between active and idle machinery with minimal false positives. Integrating all three modules, Edge-IMI enables efficient on-site inference, reducing reliance on high-bandwidth cloud services and costly hardware accelerators. We also evaluate the performance of object detection models on Raspberry Pi 5 and an Intel NUC platforms, as example edge computing platforms. We assess the feasibility of real-time processing and the impact of model optimization techniques.
Related papers
- Towards Accurate and Efficient 3D Object Detection for Autonomous Driving: A Mixture of Experts Computing System on Edge [2.372616758549089]
This paper presents an optimal computing system designed for autonomous vehicles (AVs) that simultaneously achieves low-latency and high-accuracy 3D object detection.<n>By effectively fusing LiDAR and camera data, the system leverages the complementary strengths of sparse 3D point clouds and dense 2D images to generate robust multimodal representations.
arXiv Detail & Related papers (2025-07-05T18:28:04Z) - Sparse Convolutional Recurrent Learning for Efficient Event-based Neuromorphic Object Detection [4.362139927929203]
We propose the Sparse Event-based Efficient Detector (SEED) for efficient event-based object detection on neuromorphic processors.<n>We introduce sparse convolutional recurrent learning, which achieves over 92% activation sparsity in recurrent processing, vastly reducing the cost for reasoning on sparse event data.
arXiv Detail & Related papers (2025-06-16T12:54:27Z) - Edge-Enabled Collaborative Object Detection for Real-Time Multi-Vehicle Perception [1.2289361708127877]
This research highlights the potential of edge computing to enhance collaborative perception for latency-sensitive autonomous systems.<n>We introduce an innovative framework, Edge-Enabled Collaborative Object Detection (ECOD) for CAVs, that leverages edge computing and multi-CAV collaboration for real-time, multi-perspective object detection.<n>Our experimental results demonstrate the significant benefits of ECOD in terms of improved object classification accuracy, outperforming traditional single-perspective onboard approaches by up to 75%, while ensuring low-latency, edge-driven real-time processing.
arXiv Detail & Related papers (2025-06-06T18:58:04Z) - Benchmarking Energy and Latency in TinyML: A Novel Method for Resource-Constrained AI [0.0]
This work introduces an alternative benchmarking methodology that integrates energy and latency measurements.<n>To evaluate our setup, we tested the STM32N6 MCU, which includes a NPU for executing neural networks.<n>Our findings demonstrate that reducing the core voltage and clock frequency improve the efficiency of pre- and post-processing.
arXiv Detail & Related papers (2025-05-21T15:12:14Z) - Fast-COS: A Fast One-Stage Object Detector Based on Reparameterized Attention Vision Transformer for Autonomous Driving [3.617580194719686]
This paper introduces Fast-COS, a novel single-stage object detection framework crafted specifically for driving scenes.<n> RAViT achieves 81.4% Top-1 accuracy on the ImageNet-1K dataset.<n>It surpasses leading models in efficiency, delivering up to 75.9% faster GPU inference and 1.38 higher throughput on edge devices.
arXiv Detail & Related papers (2025-02-11T09:54:09Z) - Efficient Detection Framework Adaptation for Edge Computing: A Plug-and-play Neural Network Toolbox Enabling Edge Deployment [59.61554561979589]
Edge computing has emerged as a key paradigm for deploying deep learning-based object detection in time-sensitive scenarios.<n>Existing edge detection methods face challenges: difficulty balancing detection precision with lightweight models, limited adaptability, and insufficient real-world validation.<n>We propose the Edge Detection Toolbox (ED-TOOLBOX), which utilizes generalizable plug-and-play components to adapt object detection models for edge environments.
arXiv Detail & Related papers (2024-12-24T07:28:10Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Sparse Federated Training of Object Detection in the Internet of
Vehicles [13.864554148921826]
Object detection is one of the key technologies in the Internet of Vehicles (IoV)
Current object detection methods are mostly based on centralized deep training, that is, the sensitive data obtained by edge devices need to be uploaded to the server.
We propose a federated learning-based framework, where well-trained local models are shared in the central server.
arXiv Detail & Related papers (2023-09-07T08:58:41Z) - 3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D
Point Clouds [95.54285993019843]
We propose a method for joint detection and tracking of multiple objects in 3D point clouds.
Our model exploits temporal information employing multiple frames to detect objects and track them in a single network.
arXiv Detail & Related papers (2022-11-01T20:59:38Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
This paper describes the system design of an AIOps platform which is applicable in heterogeneous, distributed environments.
It is feasible to collect metrics with a high frequency and simultaneously run specific anomaly detection algorithms directly on edge devices.
arXiv Detail & Related papers (2021-02-12T09:33:00Z) - Achieving Real-Time LiDAR 3D Object Detection on a Mobile Device [53.323878851563414]
We propose a compiler-aware unified framework incorporating network enhancement and pruning search with the reinforcement learning techniques.
Specifically, a generator Recurrent Neural Network (RNN) is employed to provide the unified scheme for both network enhancement and pruning search automatically.
The proposed framework achieves real-time 3D object detection on mobile devices with competitive detection performance.
arXiv Detail & Related papers (2020-12-26T19:41:15Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.