論文の概要: Multiresolution Analysis and Statistical Thresholding on Dynamic Networks
- arxiv url: http://arxiv.org/abs/2506.01208v1
- Date: Sun, 01 Jun 2025 22:55:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 21:47:33.992394
- Title: Multiresolution Analysis and Statistical Thresholding on Dynamic Networks
- Title(参考訳): 動的ネットワークにおける多分解能解析と統計的閾値
- Authors: Raphaël Romero, Tijl De Bie, Nick Heard, Alexander Modell,
- Abstract要約: ANIE(Adaptive Network Intensity Estimation)は、ネットワーク構造が進化する時間スケールを自動的に識別する多段階フレームワークである。
ANIEは適切な時間分解能に適応し、ノイズに頑健でありながら鋭い構造変化を捉えることができることを示す。
- 参考スコア(独自算出の注目度): 49.09073800467438
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting structural change in dynamic network data has wide-ranging applications. Existing approaches typically divide the data into time bins, extract network features within each bin, and then compare these features over time. This introduces an inherent tradeoff between temporal resolution and the statistical stability of the extracted features. Despite this tradeoff, reminiscent of time-frequency tradeoffs in signal processing, most methods rely on a fixed temporal resolution. Choosing an appropriate resolution parameter is typically difficult and can be especially problematic in domains like cybersecurity, where anomalous behavior may emerge at multiple time scales. We address this challenge by proposing ANIE (Adaptive Network Intensity Estimation), a multi-resolution framework designed to automatically identify the time scales at which network structure evolves, enabling the joint detection of both rapid and gradual changes. Modeling interactions as Poisson processes, our method proceeds in two steps: (1) estimating a low-dimensional subspace of node behavior, and (2) deriving a set of novel empirical affinity coefficients that quantify change in interaction intensity between latent factors and support statistical testing for structural change across time scales. We provide theoretical guarantees for subspace estimation and the asymptotic behavior of the affinity coefficients, enabling model-based change detection. Experiments on synthetic networks show that ANIE adapts to the appropriate time resolution and is able to capture sharp structural changes while remaining robust to noise. Furthermore, applications to real-world data showcase the practical benefits of ANIE's multiresolution approach to detecting structural change over fixed resolution methods.
- Abstract(参考訳): 動的ネットワークデータの構造変化の検出には幅広い応用がある。
既存のアプローチは通常、データをタイムビンに分割し、各ビン内のネットワーク機能を抽出し、時間とともにこれらの機能を比較する。
このことは、時間分解能と抽出された特徴の統計的安定性の間に固有のトレードオフをもたらす。
このトレードオフにもかかわらず、信号処理における時間周波数のトレードオフを思い出させるが、ほとんどの手法は時間分解能の固定に依存している。
適切な解決パラメータを選択することは一般的に困難であり、複数の時間スケールで異常な振る舞いが発生するサイバーセキュリティのようなドメインでは特に問題となる。
本稿では,ネットワーク構造が進化する時間スケールを自動的に識別する多段階フレームワークであるANIE(Adaptive Network Intensity Estimation)を提案する。
相互作用をポアソン過程としてモデル化し,(1)ノードの挙動の低次元部分空間を推定し,(2)潜在因子間の相互作用強度の変化を定量化する新しい経験的親和性係数のセットを導出し,時間スケールにおける構造変化の統計的テストを支援する。
本研究では,部分空間推定とアフィニティ係数の漸近挙動を理論的に保証し,モデルに基づく変化検出を可能にする。
合成ネットワークの実験は、ANIEが適切な時間分解能に適応し、ノイズに頑健でありながら鋭い構造変化を捉えることができることを示している。
さらに, 実世界データへの応用は, 固定解像度法における構造変化検出におけるANIEのマルチレゾリューションアプローチの実用的メリットを示す。
関連論文リスト
- A Novel Spatiotemporal Correlation Anomaly Detection Method Based on Time-Frequency-Domain Feature Fusion and a Dynamic Graph Neural Network in Wireless Sensor Network [9.031267813814118]
アテンションベースのトランスフォーマーは、長期依存を捕捉する能力により、無線センサネットワーク(WSN)のタイミング異常検出において重要な役割を担っている。
本稿では,周波数領域の特徴を動的グラフニューラルネットワーク(GNN)と統合したWSN異常検出手法を提案する。
論文 参考訳(メタデータ) (2025-02-25T04:34:18Z) - Explainable AI for Multivariate Time Series Pattern Exploration: Latent Space Visual Analytics with Temporal Fusion Transformer and Variational Autoencoders in Power Grid Event Diagnosis [1.170167705525779]
本稿では、時間融合変換器(TFT)と変分自動符号化器(VAE)の2つの生成AIモデルを統合する新しい視覚分析フレームワークを提案する。
複雑なパターンを低次元の潜在空間に還元し、PCA, t-SNE, UMAPなどの次元還元技術を用いて2次元でDBSCANで可視化する。
このフレームワークは電力グリッド信号データのケーススタディを通じて実証され、多様な根本原因を持つ障害や異常を含むマルチラベルグリッドイベントシグネチャを識別する。
論文 参考訳(メタデータ) (2024-12-20T17:41:11Z) - Fast and Reliable Probabilistic Reflectometry Inversion with Prior-Amortized Neural Posterior Estimation [73.81105275628751]
リフレクションメトリデータと互換性のある全ての構造を見つけることは、標準アルゴリズムでは計算が禁止される。
この信頼性の欠如に対処するため,確率論的深層学習法を用いて,現実的な構造を数秒で識別する。
提案手法は,シミュレーションに基づく推論と新しい適応型事前推定を併用する。
論文 参考訳(メタデータ) (2024-07-26T10:29:16Z) - Partially-Observable Sequential Change-Point Detection for Autocorrelated Data via Upper Confidence Region [12.645304808491309]
逐次変化点検出のための状態空間モデル(AUCRSS)を用いたアダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・アダプティブ・
SSMのオンライン推論のために部分的に観測可能なカルマンフィルタアルゴリズムを開発し、一般化された確率比テストに基づく変化点検出スキームを解析する。
論文 参考訳(メタデータ) (2024-03-30T02:32:53Z) - Variational Voxel Pseudo Image Tracking [127.46919555100543]
不確実性推定は、ロボット工学や自律運転といった重要な問題にとって重要なタスクである。
本稿では,3次元物体追跡のためのVoxel Pseudo Image Tracking (VPIT) の変分ニューラルネットワークによるバージョンを提案する。
論文 参考訳(メタデータ) (2023-02-12T13:34:50Z) - Stacked Residuals of Dynamic Layers for Time Series Anomaly Detection [0.0]
多変量時系列における異常検出を行うために,終端から終端までの微分可能なニューラルネットワークアーキテクチャを提案する。
このアーキテクチャは、信号の線形予測可能なコンポーネントを分離するために設計された動的システムのカスケードである。
異常検出器は、予測残差の時間的構造を利用して、孤立した点異常とセットポイントの変化の両方を検出する。
論文 参考訳(メタデータ) (2022-02-25T01:50:22Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - F-FADE: Frequency Factorization for Anomaly Detection in Edge Streams [53.70940420595329]
エッジストリームにおける異常検出のための新しいアプローチであるF-FADEを提案する。
ノード対間の相互作用の周波数の時間進化分布を効率的にモデル化するために、新しい周波数分解技術を用いる。
F-FADEは、一定メモリしか必要とせず、時間的および構造的な変化を伴う幅広い種類の異常をオンラインストリーミング環境で処理できる。
論文 参考訳(メタデータ) (2020-11-09T19:55:40Z) - Supporting Optimal Phase Space Reconstructions Using Neural Network
Architecture for Time Series Modeling [68.8204255655161]
位相空間特性を暗黙的に学習する機構を持つ人工ニューラルネットワークを提案する。
私たちのアプローチは、ほとんどの最先端戦略と同じくらいの競争力があるか、あるいは優れているかのどちらかです。
論文 参考訳(メタデータ) (2020-06-19T21:04:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。