論文の概要: Distinguishing Autonomous AI Agents from Collaborative Agentic Systems: A Comprehensive Framework for Understanding Modern Intelligent Architectures
- arxiv url: http://arxiv.org/abs/2506.01438v1
- Date: Mon, 02 Jun 2025 08:52:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 21:47:34.106071
- Title: Distinguishing Autonomous AI Agents from Collaborative Agentic Systems: A Comprehensive Framework for Understanding Modern Intelligent Architectures
- Title(参考訳): 協調型エージェントシステムから自律型AIエージェントを識別する - 現代のインテリジェントアーキテクチャを理解するための包括的フレームワーク
- Authors: Prashik Buddhaghosh Bansod,
- Abstract要約: 大規模言語モデルの出現は、人工知能の2つの異なる相互接続パラダイム、すなわちスタンドアロンAIエージェントと協調エージェントAIエコシステムを触媒した。
本研究は, 運用原則, 構造構成, 配置方法論の体系的解析を通じて, これらのアーキテクチャを識別するための決定的な枠組みを確立する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of large language models has catalyzed two distinct yet interconnected paradigms in artificial intelligence: standalone AI Agents and collaborative Agentic AI ecosystems. This comprehensive study establishes a definitive framework for distinguishing these architectures through systematic analysis of their operational principles, structural compositions, and deployment methodologies. We characterize AI Agents as specialized, tool-enhanced systems leveraging foundation models for targeted automation within constrained environments. Conversely, Agentic AI represents sophisticated multi-entity frameworks where distributed agents exhibit emergent collective intelligence through coordinated interaction protocols. Our investigation traces the evolutionary trajectory from traditional rule-based systems through generative AI foundations to contemporary agent architectures. We present detailed architectural comparisons examining planning mechanisms, memory systems, coordination protocols, and decision-making processes. The study categorizes application landscapes, contrasting single-agent implementations in customer service and content management with multi-agent deployments in research automation and complex decision support. We identify critical challenges including reliability issues, coordination complexities, and scalability constraints, while proposing innovative solutions through enhanced reasoning frameworks, robust memory architectures, and improved coordination mechanisms. This framework provides essential guidance for practitioners selecting appropriate agentic approaches and establishes foundational principles for next-generation intelligent system development.
- Abstract(参考訳): 大規模言語モデルの出現は、人工知能の2つの異なる相互接続パラダイム、すなわちスタンドアロンAIエージェントと協調エージェントAIエコシステムを触媒した。
この包括的研究は、これらのアーキテクチャを、運用原則、構造構成、配置方法論の体系的な分析を通じて区別するための決定的な枠組みを確立する。
我々はAIエージェントを、制約された環境内での自動化を目的とした基礎モデルを活用した、特殊なツール強化システムとして特徴付けている。
逆にAgentic AIは、分散エージェントが協調的なインタラクションプロトコルを通じて創発的な集団知性を示す高度なマルチエンタリティフレームワークを表す。
我々の研究は、生成AI基盤から現代のエージェントアーキテクチャまで、従来のルールベースのシステムから進化の軌跡を辿っている。
本稿では,計画機構,メモリシステム,コーディネーションプロトコル,意思決定プロセスのアーキテクチャ比較について述べる。
この研究は、顧客サービスにおけるシングルエージェント実装と、研究自動化と複雑な意思決定支援におけるマルチエージェントデプロイメントとを対比して、アプリケーションランドスケープを分類する。
信頼性の問題、コーディネーションの複雑さ、スケーラビリティの制約など、重要な課題を特定しながら、推論フレームワークの強化、堅牢なメモリアーキテクチャ、調整機構の改善を通じて革新的なソリューションを提案します。
このフレームワークは、適切なエージェントアプローチを選択する実践者にとって必須のガイダンスを提供し、次世代のインテリジェントシステム開発のための基本原則を確立する。
関連論文リスト
- AI Agents vs. Agentic AI: A Conceptual Taxonomy, Applications and Challenges [0.36868085124383626]
この研究はAIエージェントとエージェントAIを区別し、構造化された概念分類、アプリケーションマッピング、課題分析を提供する。
ジェネレーティブAIは前駆体として位置づけられており、AIエージェントはツールの統合、エンジニアリングの促進、推論の強化を通じて前進している。
エージェントAIシステムは、マルチエージェントコラボレーション、動的タスク分解、永続メモリ、オーケストレーション自律性によって特徴付けられるパラダイムシフトを表している。
論文 参考訳(メタデータ) (2025-05-15T16:21:33Z) - Internet of Agents: Fundamentals, Applications, and Challenges [66.44234034282421]
異種エージェント間のシームレスな相互接続、動的発見、協調的なオーケストレーションを可能にする基盤となるフレームワークとして、エージェントのインターネット(IoA)を紹介した。
我々は,機能通知と発見,適応通信プロトコル,動的タスクマッチング,コンセンサスとコンフリクト解決機構,インセンティブモデルなど,IoAの重要な運用イネーラを分析した。
論文 参考訳(メタデータ) (2025-05-12T02:04:37Z) - Edge-Cloud Collaborative Computing on Distributed Intelligence and Model Optimization: A Survey [59.52058740470727]
エッジクラウドコラボレーティブコンピューティング(ECCC)は、現代のインテリジェントアプリケーションの計算要求に対処するための重要なパラダイムとして登場した。
AIの最近の進歩、特にディープラーニングと大規模言語モデル(LLM)は、これらの分散システムの能力を劇的に向上させてきた。
この調査は、基本的なアーキテクチャ、技術の実現、新しいアプリケーションに関する構造化されたチュートリアルを提供する。
論文 参考訳(メタデータ) (2025-05-03T13:55:38Z) - Advancing Multi-Agent Systems Through Model Context Protocol: Architecture, Implementation, and Applications [0.0]
本稿では,モデルコンテキストプロトコル(MCP)によるマルチエージェントシステムの進化のための包括的フレームワークを提案する。
我々は、統合理論基盤、高度なコンテキスト管理技術、スケーラブルな調整パターンを開発することで、AIエージェントアーキテクチャに関するこれまでの研究を拡張した。
私たちは、現在の制限、新たな研究機会、そして業界全体にわたる潜在的な変革的応用を特定します。
論文 参考訳(メタデータ) (2025-04-26T03:43:03Z) - Advances and Challenges in Foundation Agents: From Brain-Inspired Intelligence to Evolutionary, Collaborative, and Safe Systems [133.45145180645537]
大規模言語モデル(LLM)の出現は、人工知能の変革的シフトを触媒している。
これらのエージェントがAI研究と実践的応用をますます推進するにつれて、その設計、評価、継続的な改善は複雑で多面的な課題を呈している。
この調査は、モジュール化された脳にインスパイアされたアーキテクチャ内でインテリジェントエージェントをフレーミングする、包括的な概要を提供する。
論文 参考訳(メタデータ) (2025-03-31T18:00:29Z) - Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
大きな言語モデル(LLM)エージェントは、目標駆動の振る舞いと動的適応能力を持ち、人工知能への重要な経路を示す可能性がある。
本調査は, LLMエージェントシステムを方法論中心の分類法により体系的に分解する。
私たちの作業は、エージェントの構築方法、コラボレーション方法、時間の経過とともにどのように進化するか、という、統一されたアーキテクチャの視点を提供します。
論文 参考訳(メタデータ) (2025-03-27T12:50:17Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
既存のマルチエージェントフレームワークは、多種多様なサードパーティエージェントの統合に苦慮することが多い。
我々はこれらの制限に対処する新しいフレームワークであるInternet of Agents (IoA)を提案する。
IoAはエージェント統合プロトコル、インスタントメッセージのようなアーキテクチャ設計、エージェントのチーム化と会話フロー制御のための動的メカニズムを導入している。
論文 参考訳(メタデータ) (2024-07-09T17:33:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。