Kolmogorov-Arnold Wavefunctions
- URL: http://arxiv.org/abs/2506.02171v1
- Date: Mon, 02 Jun 2025 18:58:14 GMT
- Title: Kolmogorov-Arnold Wavefunctions
- Authors: Paulo F. Bedaque, Jacob Cigliano, Hersh Kumar, Srijit Paul, Suryansh Rajawat,
- Abstract summary: Kolmogorov-Arnold network-based wavefunction ansatz as viable representations for quantum Monte Carlo simulations.<n>KANs seem to be 10 times cheaper computationally than other neural network based ansatz.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work investigates Kolmogorov-Arnold network-based wavefunction ansatz as viable representations for quantum Monte Carlo simulations. Through systematic analysis of one-dimensional model systems, we evaluate their computational efficiency and representational power against established methods. Our numerical experiments suggest some efficient training methods and we explore how the computational cost scales with desired precision, particle number, and system parameters. Roughly speaking, KANs seem to be 10 times cheaper computationally than other neural network based ansatz. We also introduce a novel approach for handling strong short-range potentials-a persistent challenge for many numerical techniques-which generalizes efficiently to higher-dimensional, physically relevant systems with short-ranged strong potentials common in atomic and nuclear physics.
Related papers
- Solving the Hubbard model with Neural Quantum States [66.55653324211542]
We study the state-of-the-art results for the doped two-dimensional (2D) Hubbard model.<n>We find different attention heads in the NQS ansatz can directly encode correlations at different scales.<n>Our work establishes NQS as a powerful tool for solving challenging many-fermions systems.
arXiv Detail & Related papers (2025-07-03T14:08:25Z) - Accurate Ab-initio Neural-network Solutions to Large-Scale Electronic Structure Problems [52.19558333652367]
We present finite-range embeddings (FiRE) for accurate large-scale ab-initio electronic structure calculations.<n>FiRE reduces the complexity of neural-network variational Monte Carlo (NN-VMC) by $sim ntextel$, the number of electrons.<n>We validate our method's accuracy on various challenging systems, including biochemical compounds and organometallic compounds.
arXiv Detail & Related papers (2025-04-08T14:28:54Z) - Neural Quantum States in Variational Monte Carlo Method: A Brief Summary [0.0]
variational Monte Carlo method based on neural quantum states for spin systems is reviewed.
neural networks can represent relatively complex wave functions with relatively small computational resources.
In quantum-state tomography, the representation method of neural quantum states has already achieved significant results.
arXiv Detail & Related papers (2024-06-03T05:55:55Z) - A Score-Based Model for Learning Neural Wavefunctions [41.82403146569561]
We provide a new framework for obtaining properties of quantum many-body ground states using score-based neural networks.
Our new framework does not require explicit probability distribution and performs the sampling via Langevin dynamics.
arXiv Detail & Related papers (2023-05-25T23:44:27Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Towards a Foundation Model for Neural Network Wavefunctions [5.145741425164946]
We propose a novel neural network ansatz, which maps uncorrelated, computationally cheap Hartree-Fock orbitals to correlated, high-accuracy neural network orbitals.
This ansatz is inherently capable of learning a single wavefunction across multiple compounds and geometries.
arXiv Detail & Related papers (2023-03-17T16:03:10Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - Solving the nuclear pairing model with neural network quantum states [58.720142291102135]
We present a variational Monte Carlo method that solves the nuclear many-body problem in the occupation number formalism.
A memory-efficient version of the reconfiguration algorithm is developed to train the network by minimizing the expectation value of the Hamiltonian.
arXiv Detail & Related papers (2022-11-09T00:18:01Z) - Dynamics of two-dimensional open quantum lattice models with tensor
networks [0.0]
We develop a tensor network method, based on an infinite Projected Entangled Pair Operator (iPEPO) ansatz, applicable directly in the thermodynamic limit.
We consider dissipative transverse quantum Ising and driven-dissipative hard core boson models in non-mean field limits.
Our method enables to study regimes which are accessible to current experiments but lie well beyond the applicability of existing techniques.
arXiv Detail & Related papers (2020-12-22T18:24:20Z) - Random Sampling Neural Network for Quantum Many-Body Problems [0.0]
We propose a general numerical method, Random Sampling Neural Networks (RSNN), to utilize the pattern recognition technique for the random sampling matrix elements of an interacting many-body system via a self-supervised learning approach.
Several exactly solvable 1D models, including Ising model with transverse field, Fermi-Hubbard model, and spin-$1/2$ $XXZ$ model, are used to test the applicability of RSNN.
arXiv Detail & Related papers (2020-11-10T15:52:44Z) - Efficient construction of tensor-network representations of many-body
Gaussian states [59.94347858883343]
We present a procedure to construct tensor-network representations of many-body Gaussian states efficiently and with a controllable error.
These states include the ground and thermal states of bosonic and fermionic quadratic Hamiltonians, which are essential in the study of quantum many-body systems.
arXiv Detail & Related papers (2020-08-12T11:30:23Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
We introduce a neural-network quantum state ansatz to model the ground-state wave function of light nuclei.
We compute the binding energies and point-nucleon densities of $Aleq 4$ nuclei as emerging from a leading-order pionless effective field theory Hamiltonian.
arXiv Detail & Related papers (2020-07-28T14:52:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.