On the Need to Align Intent and Implementation in Uncertainty Quantification for Machine Learning
- URL: http://arxiv.org/abs/2506.03037v1
- Date: Tue, 03 Jun 2025 16:19:59 GMT
- Title: On the Need to Align Intent and Implementation in Uncertainty Quantification for Machine Learning
- Authors: Shubhendu Trivedi, Brian D. Nord,
- Abstract summary: Quantifying uncertainties for machine learning (ML) models is a foundational challenge in modern data analysis.<n>In this paper, we aim to clarify the depth of these challenges by identifying these inconsistencies and articulating how different contexts impose distinct demands.
- Score: 6.368871731116769
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantifying uncertainties for machine learning (ML) models is a foundational challenge in modern data analysis. This challenge is compounded by at least two key aspects of the field: (a) inconsistent terminology surrounding uncertainty and estimation across disciplines, and (b) the varying technical requirements for establishing trustworthy uncertainties in diverse problem contexts. In this position paper, we aim to clarify the depth of these challenges by identifying these inconsistencies and articulating how different contexts impose distinct epistemic demands. We examine the current landscape of estimation targets (e.g., prediction, inference, simulation-based inference), uncertainty constructs (e.g., frequentist, Bayesian, fiducial), and the approaches used to map between them. Drawing on the literature, we highlight and explain examples of problematic mappings. To help address these issues, we advocate for standards that promote alignment between the \textit{intent} and \textit{implementation} of uncertainty quantification (UQ) approaches. We discuss several axes of trustworthiness that are necessary (if not sufficient) for reliable UQ in ML models, and show how these axes can inform the design and evaluation of uncertainty-aware ML systems. Our practical recommendations focus on scientific ML, offering illustrative cases and use scenarios, particularly in the context of simulation-based inference (SBI).
Related papers
- A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation [0.0]
Advancements in image segmentation play an integral role within the broad scope of Deep Learning-based Computer Vision.<n>Uncertainty quantification has been extensively studied within this context, enabling the expression of model ignorance (epistemic uncertainty) or data ambiguity (aleatoric uncertainty) to prevent uninformed decision-making.
arXiv Detail & Related papers (2024-11-25T13:26:09Z) - Rethinking the Uncertainty: A Critical Review and Analysis in the Era of Large Language Models [42.563558441750224]
Large Language Models (LLMs) have become fundamental to a broad spectrum of artificial intelligence applications.
Current methods often struggle to accurately identify, measure, and address the true uncertainty.
This paper introduces a comprehensive framework specifically designed to identify and understand the types and sources of uncertainty.
arXiv Detail & Related papers (2024-10-26T15:07:15Z) - A Survey of Uncertainty Estimation in LLMs: Theory Meets Practice [7.687545159131024]
We clarify the definitions of uncertainty and confidence, highlighting their distinctions and implications for model predictions.
We categorize various classes of uncertainty estimation methods derived from approaches.
We also explore techniques for uncertainty into diverse applications, including out-of-distribution detection, data annotation, and question clarification.
arXiv Detail & Related papers (2024-10-20T07:55:44Z) - Navigating Uncertainties in Machine Learning for Structural Dynamics: A Comprehensive Review of Probabilistic and Non-Probabilistic Approaches in Forward and Inverse Problems [0.0]
This paper presents a comprehensive review on navigating uncertainties in machine learning (ML)
It lists uncertainty-aware approaches into probabilistic methods and non-probabilistic methods.
The review aims to assist researchers and practitioners in making informed decisions when utilizing ML techniques to address uncertainties in structural dynamic problems.
arXiv Detail & Related papers (2024-08-16T09:43:01Z) - Certainly Uncertain: A Benchmark and Metric for Multimodal Epistemic and Aleatoric Awareness [106.52630978891054]
We present a taxonomy of uncertainty specific to vision-language AI systems.
We also introduce a new metric confidence-weighted accuracy, that is well correlated with both accuracy and calibration error.
arXiv Detail & Related papers (2024-07-02T04:23:54Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.<n>We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.<n>Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - VC Search: Bridging the Gap Between Well-Defined and Ill-Defined Problems in Mathematical Reasoning [46.25056744404318]
We develop a benchmark called Problems with Missing and Contradictory conditions ( PMC) containing over 5,000 validated ill-defined mathematical problems.<n>VCSEARCH improves the accuracy of identifying unsolvable problems by at least 12% across different large language models.
arXiv Detail & Related papers (2024-06-07T16:24:12Z) - A Structured Review of Literature on Uncertainty in Machine Learning & Deep Learning [0.8667724053232616]
We focus on a critical concern for adaptation of Machine Learning in risk-sensitive applications, namely understanding and quantifying uncertainty.
Our paper approaches this topic in a structured way, providing a review of the literature in the various facets that uncertainty is enveloped in the ML process.
Key contributions in this review are broadening the scope of uncertainty discussion, as well as an updated review of uncertainty quantification methods in Deep Learning.
arXiv Detail & Related papers (2024-06-01T07:17:38Z) - Uncertainty Quantification for In-Context Learning of Large Language Models [52.891205009620364]
In-context learning has emerged as a groundbreaking ability of Large Language Models (LLMs)
We propose a novel formulation and corresponding estimation method to quantify both types of uncertainties.
The proposed method offers an unsupervised way to understand the prediction of in-context learning in a plug-and-play fashion.
arXiv Detail & Related papers (2024-02-15T18:46:24Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
In large language models (LLMs), identifying sources of uncertainty is an important step toward improving reliability, trustworthiness, and interpretability.
In this paper, we introduce an uncertainty decomposition framework for LLMs, called input clarification ensembling.
Our approach generates a set of clarifications for the input, feeds them into an LLM, and ensembles the corresponding predictions.
arXiv Detail & Related papers (2023-11-15T05:58:35Z) - Neural Causal Models for Counterfactual Identification and Estimation [62.30444687707919]
We study the evaluation of counterfactual statements through neural models.
First, we show that neural causal models (NCMs) are expressive enough.
Second, we develop an algorithm for simultaneously identifying and estimating counterfactual distributions.
arXiv Detail & Related papers (2022-09-30T18:29:09Z) - Evaluation Gaps in Machine Learning Practice [13.963766987258161]
In practice, evaluations of machine learning models frequently focus on a narrow range of decontextualized predictive behaviours.
We examine the evaluation gaps between the idealized breadth of evaluation concerns and the observed narrow focus of actual evaluations.
By studying these properties, we demonstrate the machine learning discipline's implicit assumption of a range of commitments which have normative impacts.
arXiv Detail & Related papers (2022-05-11T04:00:44Z) - Uncertainty as a Form of Transparency: Measuring, Communicating, and
Using Uncertainty [66.17147341354577]
We argue for considering a complementary form of transparency by estimating and communicating the uncertainty associated with model predictions.
We describe how uncertainty can be used to mitigate model unfairness, augment decision-making, and build trustworthy systems.
This work constitutes an interdisciplinary review drawn from literature spanning machine learning, visualization/HCI, design, decision-making, and fairness.
arXiv Detail & Related papers (2020-11-15T17:26:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.