Towards Analyzing and Understanding the Limitations of VAPO: A Theoretical Perspective
- URL: http://arxiv.org/abs/2506.03038v2
- Date: Fri, 06 Jun 2025 22:19:27 GMT
- Title: Towards Analyzing and Understanding the Limitations of VAPO: A Theoretical Perspective
- Authors: Jintian Shao, Yiming Cheng,
- Abstract summary: Reinforcement learning (RL) enhances large language models (LLMs) in complex, long-chain-of-thought (long-CoT) reasoning.<n>We argue VAPO's limitations stem from inherent difficulties in credit assignment, value function representational capacity with temporally abstracted goals, and translating global value signals into local policy improvements.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement learning (RL) enhances large language models (LLMs) in complex, long-chain-of-thought (long-CoT) reasoning. The advanced VAPO framework, despite sophisticated mechanisms like Decoupled GAE, theoretically faces fundamental limitations in comprehensively modeling and leveraging deep, long-term value for fine-grained, step-by-step policy guidance in extended reasoning chains. We argue these limitations stem from inherent difficulties in credit assignment, value function representational capacity with temporally abstracted goals, and translating global value signals into local policy improvements, especially with sparse rewards. Our theoretical analysis examines these aspects to illuminate VAPO's boundaries in long-term value modeling, aiming to deepen understanding of current RL for advanced reasoning and suggest future research for more robust LLM agents.
Related papers
- The Policy Cliff: A Theoretical Analysis of Reward-Policy Maps in Large Language Models [0.0]
Reinforcement learning (RL) plays a crucial role in shaping the behavior of large language and reasoning models (LLMs/LRMs)<n>However, it often produces brittle and unstable policies, leading to critical failures such as spurious reasoning, deceptive alignment, and instruction disobedience.<n>This paper presents a rigorous mathematical framework for analyzing the stability of the mapping from a reward function to the optimal policy.
arXiv Detail & Related papers (2025-07-27T06:56:10Z) - Revisiting LLM Reasoning via Information Bottleneck [57.519119962528166]
Large language models (LLMs) have recently demonstrated remarkable progress in reasoning capabilities through reinforcement learning with verifiable rewards (RLVR)<n>We present a theoretical characterization of LLM reasoning grounded in information bottleneck (IB) principle.<n>We propose IB-aware reasoning optimization (IBRO), a framework that encourages reasoning trajectories to be both informative about the final correct answer and generalizable.
arXiv Detail & Related papers (2025-07-24T13:14:25Z) - Lost at the Beginning of Reasoning [82.18834329384514]
We show that the first reasoning step exerts a disproportionately large influence on the final prediction.<n>We propose an efficient sampling strategy that leverages a reward model to identify and retain high-quality first reasoning steps.<n>We introduce a new benchmark specifically constructed with deliberately flawed first reasoning steps to systematically evaluate model self-correction capabilities.
arXiv Detail & Related papers (2025-06-27T09:53:57Z) - Reasoning with Exploration: An Entropy Perspective on Reinforcement Learning for LLMs [112.40801692473723]
Balancing exploration and exploitation is a central goal in reinforcement learning (RL)<n>We introduce a minimal modification to standard RL with only one line of code: augmenting the advantage function with an entropy-based term.<n>Our method achieves significant gains on the Pass@K metric, even when evaluated with extremely large K values.
arXiv Detail & Related papers (2025-06-17T17:54:03Z) - Vision-EKIPL: External Knowledge-Infused Policy Learning for Visual Reasoning [17.421901873720156]
This paper proposes a novel RL framework called textbfVision-EKIPL.<n>It introduces high-quality actions generated by external auxiliary models during the RL training process to guide the optimization of the policy model.<n>It achieves up to a 5% performance improvement on the Reason-RFT-CoT Benchmark compared to the state-of-the-art (SOTA)
arXiv Detail & Related papers (2025-06-07T16:37:46Z) - Towards Analyzing and Understanding the Limitations of VAPO: A Theoretical Perspective [6.963986923957048]
VAPO is a framework for reinforcement learning for large language models.<n>It addresses challenges such as value model bias, heterogeneous sequence lengths, and sparse reward signals.<n>This paper explores VAPO from a theoretical perspective, highlighting areas where its assumptions might be challenged.
arXiv Detail & Related papers (2025-05-23T15:03:41Z) - QwenLong-L1: Towards Long-Context Large Reasoning Models with Reinforcement Learning [80.26953590563232]
We formalize the paradigm of long-context reasoning RL, and identify key challenges in suboptimal training efficiency and unstable optimization process.<n>We propose QwenLong-L1, a framework that adapts short-context LRMs to long-context scenarios via progressive context scaling.<n> Experiments on seven long-context document question-answering benchmarks demonstrate that QwenLong-L1-32B outperforms flagship LRMs like OpenAI-o3-mini and Qwen3-235B-A22B.
arXiv Detail & Related papers (2025-05-23T09:31:55Z) - Reinforced MLLM: A Survey on RL-Based Reasoning in Multimodal Large Language Models [22.796496516709514]
This paper provides a systematic review of recent advances in reinforcement learning (RL)-based reasoning for Multimodal Large Language Models (MLLMs)<n>We highlight two main RL paradigms, value-model-free and value-model-based methods, and analyze how RL enhances reasoning abilities by optimizing reasoning trajectories and aligning multimodal information.<n>We provide an extensive overview of benchmark datasets, evaluation protocols, and current limitations, and propose future research directions to address challenges such as sparse rewards, inefficient cross-modal reasoning, and real-world deployment constraints.
arXiv Detail & Related papers (2025-04-30T03:14:28Z) - Trade-offs in Large Reasoning Models: An Empirical Analysis of Deliberative and Adaptive Reasoning over Foundational Capabilities [101.77467538102924]
Recent advancements in Large Reasoning Models (LRMs) have demonstrated remarkable performance in specialized reasoning tasks.<n>We show that acquiring deliberative reasoning capabilities significantly reduces the foundational capabilities of LRMs.<n>We demonstrate that adaptive reasoning -- employing modes like Zero-Thinking, Less-Thinking, and Summary-Thinking -- can effectively alleviate these drawbacks.
arXiv Detail & Related papers (2025-03-23T08:18:51Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - A Principled Framework for Knowledge-enhanced Large Language Model [58.1536118111993]
Large Language Models (LLMs) are versatile, yet they often falter in tasks requiring deep and reliable reasoning.
This paper introduces a rigorously designed framework for creating LLMs that effectively anchor knowledge and employ a closed-loop reasoning process.
arXiv Detail & Related papers (2023-11-18T18:10:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.