Vision-EKIPL: External Knowledge-Infused Policy Learning for Visual Reasoning
- URL: http://arxiv.org/abs/2506.06856v1
- Date: Sat, 07 Jun 2025 16:37:46 GMT
- Title: Vision-EKIPL: External Knowledge-Infused Policy Learning for Visual Reasoning
- Authors: Chaoyang Wang, Zeyu Zhang, Haiyun Jiang,
- Abstract summary: This paper proposes a novel RL framework called textbfVision-EKIPL.<n>It introduces high-quality actions generated by external auxiliary models during the RL training process to guide the optimization of the policy model.<n>It achieves up to a 5% performance improvement on the Reason-RFT-CoT Benchmark compared to the state-of-the-art (SOTA)
- Score: 17.421901873720156
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Visual reasoning is crucial for understanding complex multimodal data and advancing Artificial General Intelligence. Existing methods enhance the reasoning capability of Multimodal Large Language Models (MLLMs) through Reinforcement Learning (RL) fine-tuning (e.g., GRPO). However, current RL approaches sample action groups solely from the policy model itself, which limits the upper boundary of the model's reasoning capability and leads to inefficient training. To address these limitations, this paper proposes a novel RL framework called \textbf{Vision-EKIPL}. The core of this framework lies in introducing high-quality actions generated by external auxiliary models during the RL training process to guide the optimization of the policy model. The policy learning with knowledge infusion from external models significantly expands the model's exploration space, effectively improves the reasoning boundary, and substantially accelerates training convergence speed and efficiency. Experimental results demonstrate that our proposed Vision-EKIPL achieved up to a 5\% performance improvement on the Reason-RFT-CoT Benchmark compared to the state-of-the-art (SOTA). It reveals that Vision-EKIPL can overcome the limitations of traditional RL methods, significantly enhance the visual reasoning performance of MLLMs, and provide a new effective paradigm for research in this field.
Related papers
- RL-PLUS: Countering Capability Boundary Collapse of LLMs in Reinforcement Learning with Hybrid-policy Optimization [86.30192066451256]
We propose RL-PLUS, a novel hybrid-policy optimization approach for Large Language Models (LLMs)<n> RL-PLUS synergizes internal exploitation with external data to achieve stronger reasoning capabilities and surpass the boundaries of base models.<n>We provide both theoretical analysis and extensive experiments to demonstrate the superiority and generalizability of our approach.
arXiv Detail & Related papers (2025-07-31T23:55:29Z) - Revisiting LLM Reasoning via Information Bottleneck [57.519119962528166]
Large language models (LLMs) have recently demonstrated remarkable progress in reasoning capabilities through reinforcement learning with verifiable rewards (RLVR)<n>We present a theoretical characterization of LLM reasoning grounded in information bottleneck (IB) principle.<n>We propose IB-aware reasoning optimization (IBRO), a framework that encourages reasoning trajectories to be both informative about the final correct answer and generalizable.
arXiv Detail & Related papers (2025-07-24T13:14:25Z) - Semi-off-Policy Reinforcement Learning for Vision-Language Slow-thinking Reasoning [50.748123348417984]
This paper proposes SOPHIA, a simple and scalable Semi-Off-Policy RL for vision-language slow-tHInking reAsoning.<n> SOPHIA builds a semi-off-policy behavior model by combining on-policy visual understanding from a trainable LVLM with off-policy slow-thinking reasoning from a language model.<n>Experiments with InternVL2.5 and InternVL3.0 with 8B and 38B sizes show the effectiveness of SOPHIA.
arXiv Detail & Related papers (2025-07-22T17:59:34Z) - Inverse Reinforcement Learning Meets Large Language Model Post-Training: Basics, Advances, and Opportunities [62.05713042908654]
This paper provides a review of advances in Large Language Models (LLMs) alignment through the lens of inverse reinforcement learning (IRL)<n>We highlight the necessity of constructing neural reward models from human data and discuss the formal and practical implications of this paradigm shift.
arXiv Detail & Related papers (2025-07-17T14:22:24Z) - Learning What Reinforcement Learning Can't: Interleaved Online Fine-Tuning for Hardest Questions [28.962415274754537]
Large language model (LLM) reasoning has shown that sophisticated behaviors such as planning and self-reflection can emerge through reinforcement learning (RL)<n>We introduce a novel training approach, textbfReLIFT (textbfReinforcement textbfL textbfInterleaved with Online textbfFine-textbfTuning)<n>In ReLIFT, the model is primarily trained using RL, but when it encounters challenging questions, high-quality solutions are collected for fine-tuning, and the training process alternate
arXiv Detail & Related papers (2025-06-09T08:11:20Z) - Beyond Accuracy: Dissecting Mathematical Reasoning for LLMs Under Reinforcement Learning [82.43575191712726]
We introduce a fine-grained analytic framework to dissect the impact ofReinforcement learning on reasoning.<n>Our framework specifically investigates key elements that have been hypothesized to benefit from RL training.
arXiv Detail & Related papers (2025-06-05T07:53:59Z) - Thought-Augmented Policy Optimization: Bridging External Guidance and Internal Capabilities [45.989423626537985]
Reinforcement learning (RL) has emerged as an effective method for training reasoning models.<n>We propose TAPO, a framework that augments RL by incorporating external high-level guidance ("thought patterns")<n>Our approach significantly outperforms GRPO by 99% on AIME, 41% on AMC, and 17% on Minerva Math.
arXiv Detail & Related papers (2025-05-21T16:06:10Z) - Model Steering: Learning with a Reference Model Improves Generalization Bounds and Scaling Laws [52.10468229008941]
This paper formalizes an emerging learning paradigm that uses a trained model as a reference to guide and enhance the training of a target model through strategic data selection or weighting.<n>We provide theoretical insights into why this approach improves generalization and data efficiency compared to training without a reference model.<n>Building on these insights, we introduce a novel method for Contrastive Language-Image Pretraining with a reference model, termed DRRho-CLIP.
arXiv Detail & Related papers (2025-05-10T16:55:03Z) - Training Large Language Models to Reason via EM Policy Gradient [0.27195102129094995]
We introduce an off-policy reinforcement learning algorithm, EM Policy Gradient, to enhance LLM reasoning.<n>We evaluate the effectiveness of EM Policy Gradient on the GSM8K and MATH (HARD) datasets.<n>Models fine-tuned with our method exhibit cognitive behaviors, such as sub-problem decomposition, self-verification, and backtracking.
arXiv Detail & Related papers (2025-04-24T01:31:05Z) - SRPO: A Cross-Domain Implementation of Large-Scale Reinforcement Learning on LLM [18.275547804539016]
Two-Staged history-Resampling Policy optimization surpasses the performance of DeepSeek-R1-Zero-32B on the AIME24 and LiveCodeBench benchmarks.<n>We introduce two key methodological innovations: (1) a two-stage cross-domain training paradigm designed to balance the development of mathematical reasoning and coding proficiency, and (2) History Resampling (HR), a technique to address ineffective samples.
arXiv Detail & Related papers (2025-04-19T13:06:03Z) - OpenVLThinker: An Early Exploration to Complex Vision-Language Reasoning via Iterative Self-Improvement [91.88062410741833]
This study investigates whether similar reasoning capabilities can be successfully integrated into large vision-language models (LVLMs)<n>We consider an approach that iteratively leverages supervised fine-tuning (SFT) on lightweight training data and Reinforcement Learning (RL) to further improve model generalization.<n>OpenVLThinker, a LVLM exhibiting consistently improved reasoning performance on challenging benchmarks such as MathVista, MathVerse, and MathVision, demonstrates the potential of our strategy for robust vision-language reasoning.
arXiv Detail & Related papers (2025-03-21T17:52:43Z) - Enhancing LLM Reasoning with Iterative DPO: A Comprehensive Empirical Investigation [29.579349371114702]
Direct Preference Optimization (DPO) is a cost-effective alternative to reinforcement learning (RL) for large language models (LLMs)<n>We show that a single round of DPO with coarse filtering significantly enhances mathematical reasoning performance.<n>With simple verifiable rewards, our model achieves RL-level performance with significantly lower computational overhead.
arXiv Detail & Related papers (2025-03-17T06:28:25Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.