PALADIN : Robust Neural Fingerprinting for Text-to-Image Diffusion Models
- URL: http://arxiv.org/abs/2506.03170v2
- Date: Wed, 23 Jul 2025 18:41:23 GMT
- Title: PALADIN : Robust Neural Fingerprinting for Text-to-Image Diffusion Models
- Authors: Murthy L, Subarna Tripathi,
- Abstract summary: The risk of misusing text-to-image generative models for malicious uses has become a serious concern.<n>As a risk mitigation strategy, attributing generative models with neural fingerprinting is emerging as a popular technique.<n>We propose an accurate method to incorporate neural fingerprinting for text-to-image diffusion models leveraging the concepts of cyclic error correcting codes from the literature of coding theory.
- Score: 9.21019970479227
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The risk of misusing text-to-image generative models for malicious uses, especially due to the open-source development of such models, has become a serious concern. As a risk mitigation strategy, attributing generative models with neural fingerprinting is emerging as a popular technique. There has been a plethora of recent work that aim for addressing neural fingerprinting. A trade-off between the attribution accuracy and generation quality of such models has been studied extensively. None of the existing methods yet achieved 100% attribution accuracy. However, any model with less than cent percent accuracy is practically non-deployable. In this work, we propose an accurate method to incorporate neural fingerprinting for text-to-image diffusion models leveraging the concepts of cyclic error correcting codes from the literature of coding theory.
Related papers
- Model Integrity when Unlearning with T2I Diffusion Models [11.321968363411145]
We propose approximate Machine Unlearning algorithms to reduce the generation of specific types of images, characterized by samples from a forget distribution''
We then propose unlearning algorithms that demonstrate superior effectiveness in preserving model integrity compared to existing baselines.
arXiv Detail & Related papers (2024-11-04T13:15:28Z) - Zero-Shot Detection of AI-Generated Images [54.01282123570917]
We propose a zero-shot entropy-based detector (ZED) to detect AI-generated images.
Inspired by recent works on machine-generated text detection, our idea is to measure how surprising the image under analysis is compared to a model of real images.
ZED achieves an average improvement of more than 3% over the SoTA in terms of accuracy.
arXiv Detail & Related papers (2024-09-24T08:46:13Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
Adrial robustness has been conventionally believed as a challenging property to encode for neural networks.
We develop a scalable and model-agnostic solution to achieve adversarial robustness without using any data.
arXiv Detail & Related papers (2024-07-26T10:49:14Z) - WOUAF: Weight Modulation for User Attribution and Fingerprinting in Text-to-Image Diffusion Models [32.29120988096214]
This paper introduces a novel approach to model fingerprinting that assigns responsibility for the generated images.
Our method modifies generative models based on each user's unique digital fingerprint, imprinting a unique identifier onto the resultant content that can be traced back to the user.
arXiv Detail & Related papers (2023-06-07T19:44:14Z) - Attributing Image Generative Models using Latent Fingerprints [33.037718660732544]
Generative models have enabled the creation of contents that are indistinguishable from those taken from nature.
One potential risk mitigation strategy is to attribute generative models via fingerprinting.
This paper investigates the use of latent semantic dimensions as fingerprints.
arXiv Detail & Related papers (2023-04-17T00:13:10Z) - Deep Image Fingerprint: Towards Low Budget Synthetic Image Detection and Model Lineage Analysis [8.777277201807351]
We develop a new detection method for images that are indistinguishable from real ones.
Our method can detect images from a known generative model and enable us to establish relationships between fine-tuned generative models.
Our approach achieves comparable performance to state-of-the-art pre-trained detection methods on images generated by Stable Diffusion and Midversa.
arXiv Detail & Related papers (2023-03-19T20:31:38Z) - NCTV: Neural Clamping Toolkit and Visualization for Neural Network
Calibration [66.22668336495175]
A lack of consideration for neural network calibration will not gain trust from humans.
We introduce the Neural Clamping Toolkit, the first open-source framework designed to help developers employ state-of-the-art model-agnostic calibrated models.
arXiv Detail & Related papers (2022-11-29T15:03:05Z) - Learning Robust Representations Of Generative Models Using Set-Based
Artificial Fingerprints [14.191129493685212]
Existing methods approximate the distance between the models via their sample distributions.
We consider unique traces (a.k.a. "artificial fingerprints") as representations of generative models.
We propose a new learning method based on set-encoding and contrastive training.
arXiv Detail & Related papers (2022-06-04T23:20:07Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z) - Responsible Disclosure of Generative Models Using Scalable
Fingerprinting [70.81987741132451]
Deep generative models have achieved a qualitatively new level of performance.
There are concerns on how this technology can be misused to spoof sensors, generate deep fakes, and enable misinformation at scale.
Our work enables a responsible disclosure of such state-of-the-art generative models, that allows researchers and companies to fingerprint their models.
arXiv Detail & Related papers (2020-12-16T03:51:54Z) - Encoding Robustness to Image Style via Adversarial Feature Perturbations [72.81911076841408]
We adapt adversarial training by directly perturbing feature statistics, rather than image pixels, to produce robust models.
Our proposed method, Adversarial Batch Normalization (AdvBN), is a single network layer that generates worst-case feature perturbations during training.
arXiv Detail & Related papers (2020-09-18T17:52:34Z) - Artificial Fingerprinting for Generative Models: Rooting Deepfake
Attribution in Training Data [64.65952078807086]
Photorealistic image generation has reached a new level of quality due to the breakthroughs of generative adversarial networks (GANs)
Yet, the dark side of such deepfakes, the malicious use of generated media, raises concerns about visual misinformation.
We seek a proactive and sustainable solution on deepfake detection by introducing artificial fingerprints into the models.
arXiv Detail & Related papers (2020-07-16T16:49:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.