FuXi-Ocean: A Global Ocean Forecasting System with Sub-Daily Resolution
- URL: http://arxiv.org/abs/2506.03210v1
- Date: Tue, 03 Jun 2025 00:52:31 GMT
- Title: FuXi-Ocean: A Global Ocean Forecasting System with Sub-Daily Resolution
- Authors: Qiusheng Huang, Yuan Niu, Xiaohui Zhong, Anboyu Guo, Lei Chen, Dianjun Zhang, Xuefeng Zhang, Hao Li,
- Abstract summary: FuXi-Ocean is the first data-driven global ocean forecasting model achieving six-hourly predictions at eddy-resolving 1/12deg spatial resolution.<n>The model architecture integrates a context-aware feature extraction module with a predictive network employing stacked attention blocks.<n>FuXi-Ocean demonstrates superior skill in predicting key variables, including temperature, salinity, and currents, across multiple depths.
- Score: 10.627782397713856
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate, high-resolution ocean forecasting is crucial for maritime operations and environmental monitoring. While traditional numerical models are capable of producing sub-daily, eddy-resolving forecasts, they are computationally intensive and face challenges in maintaining accuracy at fine spatial and temporal scales. In contrast, recent data-driven approaches offer improved computational efficiency and emerging potential, yet typically operate at daily resolution and struggle with sub-daily predictions due to error accumulation over time. We introduce FuXi-Ocean, the first data-driven global ocean forecasting model achieving six-hourly predictions at eddy-resolving 1/12{\deg} spatial resolution, reaching depths of up to 1500 meters. The model architecture integrates a context-aware feature extraction module with a predictive network employing stacked attention blocks. The core innovation is the Mixture-of-Time (MoT) module, which adaptively integrates predictions from multiple temporal contexts by learning variable-specific reliability , mitigating cumulative errors in sequential forecasting. Through comprehensive experimental evaluation, FuXi-Ocean demonstrates superior skill in predicting key variables, including temperature, salinity, and currents, across multiple depths.
Related papers
- ReconMOST: Multi-Layer Sea Temperature Reconstruction with Observations-Guided Diffusion [48.540756751934836]
ReconMOST is a data-driven guided diffusion model framework for multi-layer sea temperature reconstruction.<n>Our method extends ML-based SST reconstruction to a global, multi-layer setting, handling over 92.5% missing data.
arXiv Detail & Related papers (2025-06-12T06:27:22Z) - Deep Learning Weather Models for Subregional Ocean Forecasting: A Case Study on the Canary Current Upwelling System [0.0]
This work aims to adapt a graph neural network initially developed for global weather forecasting to improve subregional ocean prediction.<n>The model is trained with satellite data and compared to state-of-the-art physical ocean models to assess its performance in capturing ocean dynamics.<n>Our results show that the deep learning model surpasses traditional methods in precision despite some challenges in upwelling areas.
arXiv Detail & Related papers (2025-05-30T10:10:40Z) - Appa: Bending Weather Dynamics with Latent Diffusion Models for Global Data Assimilation [4.430758443755128]
Appa is a score-based data assimilation model producing global atmospheric trajectories at 0.25-degree resolution and 1-hour intervals.<n>Our results establish latent score-based data assimilation as a promising foundation for future global atmospheric modeling systems.
arXiv Detail & Related papers (2025-04-25T22:14:29Z) - LangYa: Revolutionizing Cross-Spatiotemporal Ocean Forecasting [17.125674052741928]
We introduce LangYa, a cross-spatiotemporal and air-sea coupled ocean forecasting system.<n>Results demonstrate that LangYa enables a single model to make forecasts with lead times ranging from 1 to 7 days.<n>Compared to existing numerical and AI-based ocean forecasting systems, LangYa uses 27 years of global ocean data from the Global Ocean Reanalysis and Simulation version 12.
arXiv Detail & Related papers (2024-12-24T02:14:39Z) - Advancing Marine Heatwave Forecasts: An Integrated Deep Learning Approach [3.8713566366330325]
Extreme climate phenomenon heatwaves (MHWs) pose significant challenges to marine ecosystems and industries.<n>This study introduces an integrated deep learning approach to forecast short-to-long-term MHWs on a global scale.
arXiv Detail & Related papers (2024-11-19T06:11:52Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Towards an end-to-end artificial intelligence driven global weather forecasting system [57.5191940978886]
We present an AI-based data assimilation model, i.e., Adas, for global weather variables.
We demonstrate that Adas can assimilate global observations to produce high-quality analysis, enabling the system operate stably for long term.
We are the first to apply the methods to real-world scenarios, which is more challenging and has considerable practical application potential.
arXiv Detail & Related papers (2023-12-18T09:05:28Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
We present Pangu-Weather, a deep learning based system for fast and accurate global weather forecast.
For the first time, an AI-based method outperforms state-of-the-art numerical weather prediction (NWP) methods in terms of accuracy.
Pangu-Weather supports a wide range of downstream forecast scenarios, including extreme weather forecast and large-member ensemble forecast in real-time.
arXiv Detail & Related papers (2022-11-03T17:19:43Z) - Increasing the accuracy and resolution of precipitation forecasts using
deep generative models [3.8073142980733]
We train a conditional Generative Adversarial Network -- coined CorrectorGAN -- to produce ensembles of high-resolution, bias-corrected forecasts.
CorrectorGAN, once trained, produces predictions in seconds on a single machine.
Results raise exciting questions about the necessity of regional models, and whether data-driven downscaling and correction methods can be transferred to data-poor regions.
arXiv Detail & Related papers (2022-03-23T09:45:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.