論文の概要: Dreaming up scale invariance via inverse renormalization group
- arxiv url: http://arxiv.org/abs/2506.04016v1
- Date: Wed, 04 Jun 2025 14:46:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 21:20:14.386407
- Title: Dreaming up scale invariance via inverse renormalization group
- Title(参考訳): 逆正規化群によるスケール不変性のドリームアップ
- Authors: Adam Rançon, Ulysse Rançon, Tomislav Ivek, Ivan Balog,
- Abstract要約: 我々は,2次元イジングモデルにおいて,最小限のニューラルネットワークが再正規化群 (RG) の粗粒化過程を逆転できることを示す。
トレーニング可能なパラメータを3つも持たないニューラルネットワークでさえ、重要な構成を生成することができることを実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore how minimal neural networks can invert the renormalization group (RG) coarse-graining procedure in the two-dimensional Ising model, effectively "dreaming up" microscopic configurations from coarse-grained states. This task-formally impossible at the level of configurations-can be approached probabilistically, allowing machine learning models to reconstruct scale-invariant distributions without relying on microscopic input. We demonstrate that even neural networks with as few as three trainable parameters can learn to generate critical configurations, reproducing the scaling behavior of observables such as magnetic susceptibility, heat capacity, and Binder ratios. A real-space renormalization group analysis of the generated configurations confirms that the models capture not only scale invariance but also reproduce nontrivial eigenvalues of the RG transformation. Surprisingly, we find that increasing network complexity by introducing multiple layers offers no significant benefit. These findings suggest that simple local rules, akin to those generating fractal structures, are sufficient to encode the universality of critical phenomena, opening the door to efficient generative models of statistical ensembles in physics.
- Abstract(参考訳): ニューラルネットワークが2次元Isingモデルにおける粗粒化群(RG)の粗粒化過程を最小限に抑える方法について検討した。
このタスク形式は、構成レベルでは不可能であり、確率的にアプローチすることができるため、機械学習モデルは、微視的な入力に頼ることなく、スケール不変の分布を再構築することができる。
トレーニング可能なパラメータが3つも少ないニューラルネットワークでさえ、重要な構成を生成することを学習し、磁化率、熱容量、Binder比といった観測可能なもののスケーリング挙動を再現できることを実証する。
生成された構成の実空間再正規化群解析により、モデルがスケール不変性だけでなく、RG変換の非自明な固有値を再現することを確認する。
驚くべきことに、複数のレイヤを導入することでネットワークの複雑さが増すことは、大きなメリットにならない。
これらの結果は、フラクタル構造を生成するような単純な局所規則は、臨界現象の普遍性を符号化するのに十分であり、物理学における統計的アンサンブルの効率的な生成モデルへの扉を開くことを示唆している。
関連論文リスト
- Multiscale Analysis of Woven Composites Using Hierarchical Physically Recurrent Neural Networks [0.0]
織物複合材料のマルチスケール均質化には, 詳細なミクロメカニカル評価が必要である。
本研究では,2段階の代理モデルを用いた階層型物理リカレントニューラルネットワーク(HPRNN)を提案する。
論文 参考訳(メタデータ) (2025-03-06T19:02:32Z) - Similarity Equivariant Graph Neural Networks for Homogenization of Metamaterials [3.6443770850509423]
ソフトで多孔質なメカニカルメタマテリアルは、ソフトロボティクス、音の低減、バイオメディシンに重要な応用をもたらすパターン変換を示す。
我々は、代理モデルとして機能するために好意的にスケールする機械学習ベースのアプローチを開発する。
このネットワークは、対称性の少ないグラフニューラルネットワークよりも正確で、データ効率が高いことを示す。
論文 参考訳(メタデータ) (2024-04-26T12:30:32Z) - Deep Neural Networks as Variational Solutions for Correlated Open
Quantum Systems [0.0]
より強力なモデルで直接密度行列をパラメータ化することで、より良い変分アンザッツ関数が得られることを示す。
本稿では, 散逸的一次元逆場イジングモデルと2次元散逸的ハイゼンベルクモデルについて述べる。
論文 参考訳(メタデータ) (2024-01-25T13:41:34Z) - DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion [66.21290235237808]
本稿では,データセットからのインスタンスのバッチを進化状態にエンコードするエネルギー制約拡散モデルを提案する。
任意のインスタンス対間の対拡散強度に対する閉形式最適推定を示唆する厳密な理論を提供する。
各種タスクにおいて優れた性能を有する汎用エンコーダバックボーンとして,本モデルの適用性を示す実験を行った。
論文 参考訳(メタデータ) (2023-01-23T15:18:54Z) - Topographic VAEs learn Equivariant Capsules [84.33745072274942]
本稿では, 地理的に整理された潜伏変数を用いた深部生成モデルを効率的に学習するための新しい手法であるTopographic VAEを紹介する。
このようなモデルでは,MNIST上での桁数クラス,幅,スタイルなどの健全な特徴に応じて,その活性化を組織化することが実際に学べることが示される。
我々は、既存の群同変ニューラルネットワークの能力を拡張して、複素変換に近似した同値性を示す。
論文 参考訳(メタデータ) (2021-09-03T09:25:57Z) - Mitigating Performance Saturation in Neural Marked Point Processes:
Architectures and Loss Functions [50.674773358075015]
本稿では,グラフ畳み込み層のみを利用するGCHPという単純なグラフベースのネットワーク構造を提案する。
我々は,GCHPがトレーニング時間を大幅に短縮し,時間間確率仮定による確率比損失がモデル性能を大幅に改善できることを示した。
論文 参考訳(メタデータ) (2021-07-07T16:59:14Z) - Kernel and Rich Regimes in Overparametrized Models [69.40899443842443]
過度にパラメータ化された多層ネットワーク上の勾配勾配は、RKHSノルムではないリッチな暗黙バイアスを誘発できることを示す。
また、より複雑な行列分解モデルと多層非線形ネットワークに対して、この遷移を実証的に示す。
論文 参考訳(メタデータ) (2020-02-20T15:43:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。