論文の概要: Training-free AI for Earth Observation Change Detection using Physics Aware Neuromorphic Networks
- arxiv url: http://arxiv.org/abs/2506.04285v1
- Date: Wed, 04 Jun 2025 08:45:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-06 21:53:49.326664
- Title: Training-free AI for Earth Observation Change Detection using Physics Aware Neuromorphic Networks
- Title(参考訳): 物理認識ニューロモルフィックネットワークを用いた地球観測変化検出のための無訓練AI
- Authors: Stephen Smith, Cormac Purcell, Zdenka Kuncic,
- Abstract要約: 主なボトルネックは、衛星から地上局へのデータの帯域幅制限によるダウンリンクである。
本研究では,自然災害による変化を検出する物理認識ニューロモルフィックネットワーク(PANN)を提案する。
PANNは最先端のAIモデルに対してベンチマークされ、各自然災害カテゴリで同等またはより良い結果を得た。
- 参考スコア(独自算出の注目度): 0.8192907805418583
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Earth observations from low Earth orbit satellites provide vital information for decision makers to better manage time-sensitive events such as natural disasters. For the data to be most effective for first responders, low latency is required between data capture and its arrival to decision makers. A major bottleneck is in the bandwidth-limited downlinking of the data from satellites to ground stations. One approach to overcome this challenge is to process at least some of the data on-board and prioritise pertinent data to be downlinked. In this work we propose a Physics Aware Neuromorphic Network (PANN) to detect changes caused by natural disasters from a sequence of multi-spectral satellite images and produce a change map, enabling relevant data to be prioritised for downlinking. The PANN used in this study is motivated by physical neural networks comprised of nano-electronic circuit elements known as "memristors" (nonlinear resistors with memory). The weights in the network are dynamic and update in response to varying input signals according to memristor equations of state and electrical circuit conservation laws. The PANN thus generates physics-constrained dynamical output features which are used to detect changes in a natural disaster detection task by applying a distance-based metric. Importantly, this makes the whole model training-free, allowing it to be implemented with minimal computing resources. The PANN was benchmarked against a state-of-the-art AI model and achieved comparable or better results in each natural disaster category. It thus presents a promising solution to the challenge of resource-constrained on-board processing.
- Abstract(参考訳): 地球の低軌道衛星からの地球観測は、自然災害のような時間に敏感な出来事を管理するために意思決定者にとって重要な情報を提供する。
最初の応答者にとってデータが最も効果的であるためには、データキャプチャと意思決定者への到着の間に低レイテンシが必要である。
主なボトルネックは、衛星から地上局へのデータの帯域幅制限によるダウンリンクである。
この課題を克服するための1つのアプローチは、少なくとも一部のデータをオンボードで処理し、関連するデータをダウンリンクすることである。
本研究では,多スペクトル衛星画像から自然災害による変化を検知し,変化マップを作成する物理認識ニューロモルフィックネットワーク(PANN)を提案する。
この研究で使用されるPANNは、"memristors"(メモリを持つ非線形抵抗器)として知られるナノエレクトロニクス回路要素からなる物理ニューラルネットワークによって動機付けられている。
ネットワークの重みは動的であり、状態方程式や電気回路保存則に従って異なる入力信号に応答して更新される。
そのため、PANNは物理制約付き動的出力特性を生成し、距離ベースの計量を適用して自然災害検出タスクの変化を検出する。
重要なのは、モデル全体がトレーニングなしで、最小限のコンピューティングリソースで実装できることだ。
PANNは最先端のAIモデルに対してベンチマークされ、各自然災害カテゴリで同等またはより良い結果を得た。
これにより、リソース制約付きオンボード処理の課題に対して、有望な解決策が提示される。
関連論文リスト
- Brain-Inspired Decentralized Satellite Learning in Space Computing Power Networks [42.67808523367945]
Space Computing Power Networks (Space-CPN) は、衛星の計算能力を調整し、オンボードのデータ処理を可能にする、有望なアーキテクチャとして登場した。
本稿では,ニューロモルフィックコンピューティングアーキテクチャがサポートするスパイクニューラルネットワーク(SNN)をオンボードデータ処理に適用することを提案する。
我々は分散型ニューロモルフィック学習フレームワークを提案し、通信効率の良い平面間モデルアグリゲーション法を開発した。
論文 参考訳(メタデータ) (2025-01-27T12:29:47Z) - Learning Physics From Video: Unsupervised Physical Parameter Estimation for Continuous Dynamical Systems [49.11170948406405]
本研究では,単一のビデオから既知の連続制御方程式の物理パラメータを推定する教師なし手法を提案する。
Delfys75は5種類の動的システムのための75本のビデオからなる実世界のデータセットだ。
論文 参考訳(メタデータ) (2024-10-02T09:44:54Z) - Quanv4EO: Empowering Earth Observation by means of Quanvolutional Neural Networks [62.12107686529827]
本稿は、大量のリモートセンシングデータの処理において、量子コンピューティング技術を活用することへの大きなシフトを取り上げる。
提案したQuanv4EOモデルでは,多次元EOデータを前処理するための準進化法が導入された。
主要な知見は,提案モデルが画像分類の精度を維持するだけでなく,EOのユースケースの約5%の精度向上を図っていることを示唆している。
論文 参考訳(メタデータ) (2024-07-24T09:11:34Z) - Scale-Translation Equivariant Network for Oceanic Internal Solitary Wave Localization [7.444865250744234]
内部孤立波(英:internal Solitary wave、ISW)は、内部の海洋でしばしば観測される重力波である。
光リモートセンシング画像における雲のカバーは、地表面の情報を可変的に曖昧にし、ぼやけたり、表面の観察を欠いたりする。
本稿では,ISWを自動検出するアルゴリズムを用いた機械学習ソリューションを提案する。
論文 参考訳(メタデータ) (2024-06-18T21:09:56Z) - Physics-Informed Deep Learning of Rate-and-State Fault Friction [0.0]
我々は, 前方問題と非線形欠陥摩擦パラメータの直接逆変換のためのマルチネットワークPINNを開発した。
本稿では1次元および2次元のストライク・スリップ断層に対する速度・状態摩擦を考慮した計算PINNフレームワークを提案する。
その結果, 断層におけるパラメータ逆転のネットワークは, 結合した物質変位のネットワークよりもはるかに優れていることがわかった。
論文 参考訳(メタデータ) (2023-12-14T23:53:25Z) - Efficient Model Adaptation for Continual Learning at the Edge [15.334881190102895]
ほとんどの機械学習(ML)システムは、トレーニングとデプロイメントの間、定常的で一致したデータ分散を前提としている。
データ分布は、環境要因、センサー特性、タスク・オブ・関心などの変化により、時間とともに変化することが多い。
本稿では,ドメインシフト下での効率的な連続学習のためのアダプタ・リコンフィグレータ(EAR)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T23:55:17Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - On the benefits of robust models in modulation recognition [53.391095789289736]
畳み込み層を用いたディープニューラルネットワーク(DNN)は、通信における多くのタスクにおいて最先端である。
画像分類のような他の領域では、DNNは敵の摂動に弱いことが示されている。
最新モデルの堅牢性をテストするための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-27T19:58:06Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
本稿では,モデル予測制御(MPC)の定式化を拡張したオンライン経路計画アーキテクチャを提案する。
我々のアルゴリズムは、状態推定の共分散を推論するリカレントニューラルネットワーク(RNN)とオブジェクト検出パイプラインを組み合わせる。
本手法のロバスト性は, 複雑な四足歩行ロボットの力学で検証され, ほとんどのロボットプラットフォームに適用可能である。
論文 参考訳(メタデータ) (2020-07-28T07:34:30Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoTデバイスは複雑なディープニューラルネットワーク(DNN)モデルにはほとんど余裕がなく、異常検出タスクをクラウドにオフロードすることは長い遅延を引き起こす。
本稿では,分散階層エッジコンピューティング(HEC)システムを対象とした適応型異常検出手法のデモと構築を行う。
提案手法は,検出タスクをクラウドにオフロードした場合と比較して,精度を犠牲にすることなく検出遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2020-04-15T06:13:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。