論文の概要: Backbone Augmented Training for Adaptations
- arxiv url: http://arxiv.org/abs/2506.04288v1
- Date: Wed, 04 Jun 2025 10:09:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-06 21:53:49.328604
- Title: Backbone Augmented Training for Adaptations
- Title(参考訳): 適応のためのバックボーン強化トレーニング
- Authors: Jae Wan Park, Junhyeok Kim, Youngjun Jun, Hyunah Ko, Seong Jae Hwang,
- Abstract要約: Backbone Augmented Training (BAT)は、バックボーンデータを活用して適応データセットを拡張する方法である。
ALBATは、パーソナライズタスクと言語生成タスクの両方において、少ないデータによる適応トレーニングを効果的に強化する。
- 参考スコア(独自算出の注目度): 3.7515646463759698
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adaptations facilitate efficient training of large backbone models, including diffusion models for image generation and transformer-based language models. While various adaptation techniques enhance performance with minimal computational resources, limited adaptation data often leads to challenges in training. To address this, we focus on the enormous amount of backbone data used to pre-train the backbone models. We propose Backbone Augmented Training (BAT), a method that leverages backbone data to augment the adaptation dataset. First, we formulate and prove two mathematical key propositions: one establishes the validity of BAT, while the other identifies a condition under which BAT benefits adaptation. Furthermore, we introduce an advanced data selection scheme that satisfies these propositions and present ALBAT algorithm to implement this approach. ALBAT efficiently enhances adaptation training in both personalization and language generation tasks with scarce data.
- Abstract(参考訳): 適応は、画像生成のための拡散モデルやトランスフォーマーベースの言語モデルを含む、大きなバックボーンモデルの効率的なトレーニングを促進する。
様々な適応技術は最小限の計算資源で性能を向上させるが、限られた適応データはしばしば訓練の課題に繋がる。
これを解決するために、バックボーンモデルの事前トレーニングに使用される膨大なバックボーンデータに焦点を当てる。
本稿では、バックボーンデータを利用して適応データセットを増強するBackbone Augmented Training (BAT)を提案する。
1つはBATの有効性を確立し、もう1つはBATが適応の恩恵を受ける条件を特定する。
さらに、これらの命題を満たす高度なデータ選択方式を導入し、このアプローチを実装するためのALBATアルゴリズムを提案する。
ALBATは、パーソナライズタスクと言語生成タスクの両方において、少ないデータによる適応トレーニングを効果的に強化する。
関連論文リスト
- Effective Dual-Region Augmentation for Reduced Reliance on Large Amounts of Labeled Data [1.0901840476380924]
本稿では,大規模ラベル付きデータセットへの依存を減らすために,新しい二重領域拡張手法を提案する。
提案手法は,前景オブジェクトにランダムノイズ摂動を適用することで,対象データ変換を行う。
構造化変換によるトレーニングデータの拡大により,ドメイン間のモデル一般化が可能となる。
論文 参考訳(メタデータ) (2025-04-17T16:42:33Z) - Adaptive Data Optimization: Dynamic Sample Selection with Scaling Laws [59.03420759554073]
本稿では,オンライン手法でデータ分散を最適化するアルゴリズムであるAdaptive Data Optimization (ADO)を導入する。
ADOは外部の知識やプロキシモデル、モデル更新の変更を必要としない。
ADOは、ドメインごとのスケーリング法則を使用して、トレーニング中の各ドメインの学習ポテンシャルを推定し、データ混合を調整する。
論文 参考訳(メタデータ) (2024-10-15T17:47:44Z) - Accelerating Large Language Model Pretraining via LFR Pedagogy: Learn, Focus, and Review [50.78587571704713]
Learn-Focus-Review(LFR)は、モデルの学習進捗に適応する動的トレーニングアプローチである。
LFRは、データブロック(トークンのシーケンス)にわたるモデルの学習パフォーマンスを追跡し、データセットの困難な領域を再検討する。
フルデータセットでトレーニングされたベースラインモデルと比較して、LFRは一貫して低いパープレキシティと高い精度を達成した。
論文 参考訳(メタデータ) (2024-09-10T00:59:18Z) - Data Adaptive Traceback for Vision-Language Foundation Models in Image Classification [34.37262622415682]
我々はData Adaptive Tracebackと呼ばれる新しい適応フレームワークを提案する。
具体的には、ゼロショット法を用いて、事前学習データの最もダウンストリームなタスク関連サブセットを抽出する。
我々は、擬似ラベルに基づく半教師付き手法を採用し、事前学習画像の再利用と、半教師付き学習における確証バイアス問題に対処するための視覚言語コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2024-07-11T18:01:58Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWGは拡散に基づくニューラルネットワーク重み生成技術であり、転送学習のために高性能な重みを効率よく生成する。
本稿では,ニューラルネットワーク重み生成のための遅延拡散パラダイムを再放送するために,生成的ハイパー表現学習を拡張した。
我々のアプローチは大規模言語モデル(LLM)のような大規模アーキテクチャにスケーラブルであり、現在のパラメータ生成技術の限界を克服しています。
論文 参考訳(メタデータ) (2024-02-28T08:34:23Z) - Efficient Grammatical Error Correction Via Multi-Task Training and
Optimized Training Schedule [55.08778142798106]
原文と修正文のアライメントを利用する補助タスクを提案する。
我々は,各タスクをシーケンス・ツー・シーケンス問題として定式化し,マルチタスク・トレーニングを行う。
トレーニングに使用されるデータセットの順序や、データセット内の個々のインスタンスでさえ、最終的なパフォーマンスに重要な影響を与える可能性があることが分かりました。
論文 参考訳(メタデータ) (2023-11-20T14:50:12Z) - Phased Data Augmentation for Training a Likelihood-Based Generative Model with Limited Data [0.0]
生成モデルは現実的なイメージの作成に優れていますが、トレーニングのための広範なデータセットに依存しているため、大きな課題があります。
現在のデータ効率の手法はGANアーキテクチャに重点を置いており、他の生成モデルの訓練にギャップを残している。
位相データ拡張(phased data augmentation)は、このギャップに対処する新しい手法であり、データ分散に固有の変更を加えることなく、限られたデータシナリオでのトレーニングを最適化する。
論文 参考訳(メタデータ) (2023-05-22T03:38:59Z) - Contextual Squeeze-and-Excitation for Efficient Few-Shot Image
Classification [57.36281142038042]
本稿では,事前学習したニューラルネットワークを新しいタスクで調整し,性能を大幅に向上させる,Contextual Squeeze-and-Excitation (CaSE) という適応ブロックを提案する。
また、メタトレーニングされたCaSEブロックと微調整ルーチンを利用して効率よく適応する、アッパーCaSEと呼ばれるコーディネートダイスに基づく新しいトレーニングプロトコルを提案する。
論文 参考訳(メタデータ) (2022-06-20T15:25:08Z) - BERT WEAVER: Using WEight AVERaging to enable lifelong learning for
transformer-based models in biomedical semantic search engines [49.75878234192369]
We present WEAVER, a simple, yet efficient post-processing method that infuse old knowledge into the new model。
WEAVERを逐次的に適用すると、同じ単語の埋め込み分布が、一度にすべてのデータに対する総合的なトレーニングとして得られることを示す。
論文 参考訳(メタデータ) (2022-02-21T10:34:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。