Classical and quantum trace-free Einstein cosmology
- URL: http://arxiv.org/abs/2506.04550v1
- Date: Thu, 05 Jun 2025 01:54:50 GMT
- Title: Classical and quantum trace-free Einstein cosmology
- Authors: Merced Montesinos, Abdel Pérez-Lorenzana, Jorge Meza, Diego Gonzalez,
- Abstract summary: Trace-free Einstein gravity is mechanically solvable both classically and quantum mechanically.<n>In all cases, the observable identified as the cosmological constant is six times the Hamiltonian.<n>We calculate the spectrum of the observable corresponding to the cosmological constant.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trace-free Einstein gravity, in the absence of matter fields and using the Friedmann-Robertson-Walker (FRW) metric, is solvable both classically and quantum mechanically. This is achieved by using the conformal time as the time variable and the negative or positive of the inverse of the scale factor as configuration variable to write the classical equation of motion, which turns out to be the one of a free particle ($k=0$), a harmonic oscillator ($k=1$), and a repulsive oscillator ($k=-1$) in the real half-line. In all cases, the observable identified as the cosmological constant is six times the Hamiltonian. In particular, for a closed Universe ($k=1$), spacetime exhibits a cyclic evolution along which the scalar curvature is constant and finite, thereby avoiding singularities. The quantum theory is reached by using canonical quantization. We calculate the spectrum of the observable corresponding to the cosmological constant. Remarkably, for the closed Universe ($k=1$), the spectrum is discrete and positive while for flat ($k=0$) and open ($k=-1$) universes, the spectra are continuous. Heisenberg's uncertainty principle imposes limitations on the simultaneous measurement of the Hubble expansion (momentum variable) and the configuration variable. We also report the observable identified as the cosmological constant for inflaton, phantom and perfect fluids coupled to trace-free Einstein gravity in the FRW metric.
Related papers
- Quantum fluctuation theorem in a curved spacetime [0.0]
We report a fully general relativistic detailed quantum fluctuation theorem based on the two point measurement scheme.<n>We demonstrate how the spacetime curvature can produce entropy in a localized quantum system moving in a general spacetime.
arXiv Detail & Related papers (2024-05-06T23:16:50Z) - Quantum Isotropic Universe in RQM Analogy: the Cosmological Horizon [0.0]
We investigate the quantum dynamics of the isotropic Universe in the presence of a free massless scalar field.
We show how the introduction of a "turning point" in the Universe evolution allows to overcome an intrinsic ambiguity in representing the expanding and collapsing Universe.
arXiv Detail & Related papers (2024-04-10T14:45:56Z) - Coherent states of quantum spacetimes for black holes and de Sitter
spacetime [0.0]
We provide a group theory approach to coherent states describing quantum space-time and its properties.
This provides a relativistic framework for the metric of a Riemmanian space with bosonic and fermionic coordinates.
arXiv Detail & Related papers (2023-12-07T19:54:15Z) - Dynamics of magnetization at infinite temperature in a Heisenberg spin chain [105.07522062418397]
In a chain of 46 superconducting qubits, we study the probability distribution, $P(mathcalM)$, of the magnetization transferred across the chain's center.
The first two moments of $P(mathcalM)$ show superdiffusive behavior, a hallmark of KPZ.
The third and fourth moments rule out the KPZ conjecture and allow for evaluating other theories.
arXiv Detail & Related papers (2023-06-15T17:58:48Z) - Interpretation of Quantum Theory and Cosmology [0.0]
We reconsider the problem of the interpretation of the Quantum Theory (QT) in the perspective of the entire universe.
For the Universe we adopt a variance of the LambdaCDM model with Omega=1, one single inflaton with an Higgs type potential, the initial time at t=minus infinite.
arXiv Detail & Related papers (2023-04-14T12:32:30Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Does the Universe have its own mass? [62.997667081978825]
The mass of the universe is a distribution of non-zero values of gravitational constraints.
A formulation of the Euclidean quantum theory of gravity is also proposed to determine the initial state.
Being unrelated to ordinary matter, the distribution of its own mass affects the geometry of space.
arXiv Detail & Related papers (2022-12-23T22:01:32Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Quantum Entanglement of Non-Hermitian Quasicrystals [7.371841894852217]
We present a class of experimentally realizable models for non-Hermitian quasicrystal chains.
We numerically determine the metal-insulator transition point.
Inspired by entanglement spectrum, we further analytically prove that a duality exists between the two phase regions.
arXiv Detail & Related papers (2021-12-26T16:17:04Z) - Qubit regularization of asymptotic freedom [35.37983668316551]
Heisenberg-comb acts on a Hilbert space with only two qubits per spatial lattice site.
We show that the model reproduces the universal step-scaling function of the traditional model up to correlation lengths of 200,000 in lattice units.
We argue that near-term quantum computers may suffice to demonstrate freedom.
arXiv Detail & Related papers (2020-12-03T18:41:07Z) - Making a Quantum Universe: Symmetry and Gravity [0.0]
We outline the preliminary results for a model of quantum universe.
We show that, in the absence of a background spacetime, this Universe is trivial and static.
We identify the classical spacetime with parameter space of the Hilbert space of the Universe.
arXiv Detail & Related papers (2020-09-07T21:15:45Z) - Projection evolution and quantum spacetime [68.8204255655161]
We discuss the problem of time in quantum mechanics.
An idea of construction of a quantum spacetime as a special set of the allowed states is presented.
An example of a structureless quantum Minkowski-like spacetime is also considered.
arXiv Detail & Related papers (2019-10-24T14:54:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.