論文の概要: Can Artificial Intelligence Trade the Stock Market?
- arxiv url: http://arxiv.org/abs/2506.04658v1
- Date: Thu, 05 Jun 2025 05:59:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-06 21:53:49.558331
- Title: Can Artificial Intelligence Trade the Stock Market?
- Title(参考訳): 人工知能は株式市場を取引できるのか?
- Authors: Jędrzej Maskiewicz, Paweł Sakowski,
- Abstract要約: 本稿では,Double Deep Q-Network (DDQN) と Proximal Policy Optimization (PPO) の2つのアルゴリズムに着目し,市場取引におけるDeep Reinforcement Learning (DRL) の利用について検討する。
S&P500指数とBitcoinの3つの通貨ペアにまたがるアルゴリズムを、2019-2023年の日々のデータに基づいて評価している。
その結果,貿易におけるDRLの有効性と,不利な条件下での貿易を戦略的に回避することでリスク管理能力が示された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The paper explores the use of Deep Reinforcement Learning (DRL) in stock market trading, focusing on two algorithms: Double Deep Q-Network (DDQN) and Proximal Policy Optimization (PPO) and compares them with Buy and Hold benchmark. It evaluates these algorithms across three currency pairs, the S&P 500 index and Bitcoin, on the daily data in the period of 2019-2023. The results demonstrate DRL's effectiveness in trading and its ability to manage risk by strategically avoiding trades in unfavorable conditions, providing a substantial edge over classical approaches, based on supervised learning in terms of risk-adjusted returns.
- Abstract(参考訳): 本稿では,Double Deep Q-Network (DDQN) と Proximal Policy Optimization (PPO) の2つのアルゴリズムに着目し,市場取引におけるDeep Reinforcement Learning (DRL) の利用について検討し,Buy and Holdベンチマークと比較した。
S&P500指数とBitcoinの3つの通貨ペアにまたがるアルゴリズムを、2019-2023年の日々のデータに基づいて評価している。
その結果、DRLの貿易効果とリスク管理能力は、戦略的に不利な条件下での貿易を回避し、リスク調整されたリターンの観点から教師付き学習に基づく古典的アプローチに対して実質的な優位性をもたらすことを示した。
関連論文リスト
- Your Offline Policy is Not Trustworthy: Bilevel Reinforcement Learning for Sequential Portfolio Optimization [82.03139922490796]
強化学習(Reinforcement Learning, RL)は、過去のデータを用いたリスクを最小限にしつつ累積リターンを最大化することを目的とした、株式取引のような逐次的ポートフォリオ最適化タスクにおいて、大きな可能性を示してきた。
従来のRLアプローチは、固定データセット内での振る舞いの購入と販売を最適に記憶するだけのポリシーを生成することが多い。
当社のアプローチでは,ポートフォリオ最適化を新たなタイプの部分オフラインRL問題として捉え,2つの技術的貢献を行う。
論文 参考訳(メタデータ) (2025-05-19T06:37:25Z) - Risk-averse policies for natural gas futures trading using distributional reinforcement learning [0.0]
本稿では,天然ガス先物取引における3つの分散RLアルゴリズムの有効性について検討する。
私たちの知る限りでは、これらのアルゴリズムはトレーディングの文脈で一度も適用されていない。
CVaR を最大化するために C51 と IQN を訓練すると, リスク回避性のあるリスク感受性ポリシーが得られた。
論文 参考訳(メタデータ) (2025-01-08T11:11:25Z) - Optimizing Portfolio with Two-Sided Transactions and Lending: A Reinforcement Learning Framework [0.0]
本研究では,リスクの高い環境に適した強化学習に基づくポートフォリオ管理モデルを提案する。
マルチヘッドアテンションを持つ畳み込みニューラルネットワークを用いたソフトアクタ・クリティカル(SAC)エージェントを用いてモデルを実装した。
市場のボラティリティ(変動性)が変化する2つの16カ月間にわたってテストされたこのモデルは、ベンチマークを著しく上回った。
論文 参考訳(メタデータ) (2024-08-09T23:36:58Z) - When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments [55.19252983108372]
LLMによって駆動される、StockAgentと呼ばれるマルチエージェントAIシステムを開発した。
StockAgentを使えば、ユーザーはさまざまな外部要因が投資家取引に与える影響を評価することができる。
AIエージェントに基づく既存のトレーディングシミュレーションシステムに存在するテストセットのリーク問題を回避する。
論文 参考訳(メタデータ) (2024-07-15T06:49:30Z) - Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
本稿では,これらの投資商品を活用するために,ニューラルネットワークに基づく効果的なアルゴリズムを提案する。
シャープ比を最大化するために、各アセットの割り当て重量を時間間隔で出力するディープニューラルネットワークを訓練する。
ネットワークの特定の資産に対するバイアスを規制する新たな損失項を提案し,最小分散戦略に近い割り当て戦略をネットワークに学習させる。
論文 参考訳(メタデータ) (2023-10-02T12:33:28Z) - Algorithmic Trading Using Continuous Action Space Deep Reinforcement
Learning [11.516147824168732]
本稿では、Twin-Delayed DDPG(TD3)と日替わり価格を用いて、株式および暗号通貨市場でのトレーディング戦略を実現するためのアプローチを提案する。
本研究では,株式(Amazon)と暗号通貨(Bitcoin)の両市場を対象とし,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2022-10-07T11:42:31Z) - Deep Reinforcement Learning Approach for Trading Automation in The Stock
Market [0.0]
本稿では,Deep Reinforcement Learning (DRL)アルゴリズムを用いて,株式市場における収益性取引を生成するモデルを提案する。
我々は、市場が課す制約を考慮して、部分的に観測されたマルコフ決定プロセス(POMDP)モデルとして取引問題を定式化する。
次に, Twin Delayed Deep Deterministic Policy Gradient (TD3) アルゴリズムを用いて, 2.68 Sharpe Ratio を未知のデータセットに報告し, 定式化した POMDP 問題を解く。
論文 参考訳(メタデータ) (2022-07-05T11:34:29Z) - Deep Q-Learning Market Makers in a Multi-Agent Simulated Stock Market [58.720142291102135]
本稿では,エージェント・ベースの観点から,これらのマーケット・メーカーの戦略に関する研究に焦点をあてる。
模擬株式市場における知的市場マーカー作成のための強化学習(Reinforcement Learning, RL)の適用を提案する。
論文 参考訳(メタデータ) (2021-12-08T14:55:21Z) - An Application of Deep Reinforcement Learning to Algorithmic Trading [4.523089386111081]
本稿では, 深部強化学習(DRL)に基づくアルゴリズム取引問題の解法を提案する。
幅広い株式市場でシャープ比のパフォーマンス指標を最大化するために、新しいDRLトレーディング戦略を提案する。
得られた強化学習 (RL) エージェントのトレーニングは, 限られた市場履歴データから人工軌道を生成することに基づいている。
論文 参考訳(メタデータ) (2020-04-07T14:57:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。