MMRefine: Unveiling the Obstacles to Robust Refinement in Multimodal Large Language Models
- URL: http://arxiv.org/abs/2506.04688v1
- Date: Thu, 05 Jun 2025 07:11:36 GMT
- Title: MMRefine: Unveiling the Obstacles to Robust Refinement in Multimodal Large Language Models
- Authors: Gio Paik, Geewook Kim, Jinbae Im,
- Abstract summary: This paper introduces MMRefine, a benchmark designed to evaluate the error refinement capabilities of Multimodal Large Language Models (MLLMs)<n>As the emphasis shifts toward enhancing reasoning during inference, MMRefine provides a framework that evaluates MLLMs' abilities to detect and correct errors across six distinct scenarios.<n> Experiments with various open and closed MLLMs reveal bottlenecks and factors impeding refinement performance, highlighting areas for improvement in effective reasoning enhancement.
- Score: 4.451479907610764
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces MMRefine, a MultiModal Refinement benchmark designed to evaluate the error refinement capabilities of Multimodal Large Language Models (MLLMs). As the emphasis shifts toward enhancing reasoning during inference, MMRefine provides a framework that evaluates MLLMs' abilities to detect and correct errors across six distinct scenarios beyond just comparing final accuracy before and after refinement. Furthermore, the benchmark analyzes the refinement performance by categorizing errors into six error types. Experiments with various open and closed MLLMs reveal bottlenecks and factors impeding refinement performance, highlighting areas for improvement in effective reasoning enhancement. Our code and dataset are publicly available at https://github.com/naver-ai/MMRefine.
Related papers
- When Scale Meets Diversity: Evaluating Language Models on Fine-Grained Multilingual Claim Verification [14.187153195380668]
Large language models have remarkable capabilities across many NLP tasks, but their effectiveness for multilingual claim verification with nuanced classification schemes remains understudied.<n>We evaluate five state-of-the-art language models on the X-Fact dataset, which spans 25 languages with seven distinct veracity categories.<n>Surprisingly, we find that XLM-R substantially outperforms all tested LLMs, achieving 57.7% macro-F1 compared to the best LLM performance of 16.9%.
arXiv Detail & Related papers (2025-07-28T10:49:04Z) - Multimodal Inconsistency Reasoning (MMIR): A New Benchmark for Multimodal Reasoning Models [26.17300490736624]
Multimodal Large Language Models (MLLMs) are predominantly trained and tested on consistent visual-textual inputs.<n>We propose the Multimodal Inconsistency Reasoning benchmark to assess MLLMs' ability to detect and reason about semantic mismatches.<n>We evaluate six state-of-the-art MLLMs, showing that models with dedicated multimodal reasoning capabilities, such as o1, substantially outperform their counterparts.
arXiv Detail & Related papers (2025-02-22T01:52:37Z) - Calling a Spade a Heart: Gaslighting Multimodal Large Language Models via Negation [65.92001420372007]
This paper systematically evaluates state-of-the-art MLLMs across diverse benchmarks.<n>We introduce the first benchmark GaslightingBench, specifically designed to evaluate the vulnerability of MLLMs to negation arguments.
arXiv Detail & Related papers (2025-01-31T10:37:48Z) - MQM-APE: Toward High-Quality Error Annotation Predictors with Automatic Post-Editing in LLM Translation Evaluators [53.91199933655421]
Large Language Models (LLMs) have shown significant potential as judges for Machine Translation (MT) quality assessment.<n>We introduce a universal and training-free framework, $textbfMQM-APE, based on the idea of filtering out non-impactful errors.<n>Experiments show that our approach consistently improves both the reliability and quality of error spans against GEMBA-MQM.
arXiv Detail & Related papers (2024-09-22T06:43:40Z) - A Gradient Analysis Framework for Rewarding Good and Penalizing Bad Examples in Language Models [63.949883238901414]
We present a unique angle of gradient analysis of loss functions that simultaneously reward good examples and penalize bad ones in LMs.
We find that ExMATE serves as a superior surrogate for MLE, and that combining DPO with ExMATE instead of MLE further enhances both the statistical (5-7%) and generative (+18% win rate) performance.
arXiv Detail & Related papers (2024-08-29T17:46:18Z) - UBench: Benchmarking Uncertainty in Large Language Models with Multiple Choice Questions [10.28688988951815]
We introduce UBench, a new benchmark for evaluating the uncertainty of large language models (LLMs)<n>Unlike other benchmarks, UBench is based on confidence intervals. It encompasses 11,978 multiple-choice questions spanning knowledge, language, understanding, and reasoning capabilities.<n>Our analysis reveals several crucial insights: 1) Our confidence interval-based methods are highly effective for uncertainty quantification; 2) Regarding uncertainty, outstanding open-source models show competitive performance versus closed-source models; 3) CoT and RP prompts present potential ways to improve model reliability, while the influence of temperature changes follows no universal rule.
arXiv Detail & Related papers (2024-06-18T16:50:38Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Multi-modal Preference Alignment Remedies Degradation of Visual Instruction Tuning on Language Models [7.056824589733873]
Multi-modal large language models (MLLMs) are expected to support multi-turn queries of interchanging image and text modalities in production.
Current MLLMs trained with visual-question-answering datasets could suffer from degradation.
We propose a distillation-based multi-modal alignment model with fine-grained annotations on a small dataset that restores and boosts MLLM's language capability after visual instruction tuning.
arXiv Detail & Related papers (2024-02-16T18:42:08Z) - LLMRefine: Pinpointing and Refining Large Language Models via Fine-Grained Actionable Feedback [65.84061725174269]
Recent large language models (LLM) are leveraging human feedback to improve their generation quality.
We propose LLMRefine, an inference time optimization method to refine LLM's output.
We conduct experiments on three text generation tasks, including machine translation, long-form question answering (QA), and topical summarization.
LLMRefine consistently outperforms all baseline approaches, achieving improvements up to 1.7 MetricX points on translation tasks, 8.1 ROUGE-L on ASQA, 2.2 ROUGE-L on topical summarization.
arXiv Detail & Related papers (2023-11-15T19:52:11Z) - LLMs as Factual Reasoners: Insights from Existing Benchmarks and Beyond [135.8013388183257]
We propose a new protocol for inconsistency detection benchmark creation and implement it in a 10-domain benchmark called SummEdits.
Most LLMs struggle on SummEdits, with performance close to random chance.
The best-performing model, GPT-4, is still 8% below estimated human performance.
arXiv Detail & Related papers (2023-05-23T21:50:06Z) - ReWOO: Decoupling Reasoning from Observations for Efficient Augmented
Language Models [32.95155349925248]
We propose a modular paradigm ReWOO that detaches the reasoning process from external observations, thus significantly reducing token consumption.
We show that ReWOO achieves 5x token efficiency and 4% accuracy improvement on HotpotQA, a multi-step reasoning benchmark.
Our illustrative work offloads reasoning ability from 175B GPT3.5 into 7B LLaMA, demonstrating the significant potential for truly efficient and scalable ALM systems.
arXiv Detail & Related papers (2023-05-23T00:16:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.