Mitigating Confounding in Speech-Based Dementia Detection through Weight Masking
- URL: http://arxiv.org/abs/2506.05610v1
- Date: Thu, 05 Jun 2025 21:45:59 GMT
- Title: Mitigating Confounding in Speech-Based Dementia Detection through Weight Masking
- Authors: Zhecheng Sheng, Xiruo Ding, Brian Hur, Changye Li, Trevor Cohen, Serguei Pakhomov,
- Abstract summary: This work addresses gender confounding in dementia detection.<n>It proposes two methods: the $textitExtended Confounding Filter$ and the $textitDual Filter$, which isolate and ablate weights associated with gender.<n>We evaluate these methods on dementia datasets with first-person narratives from patients with cognitive impairment and healthy controls.
- Score: 7.542209006633763
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep transformer models have been used to detect linguistic anomalies in patient transcripts for early Alzheimer's disease (AD) screening. While pre-trained neural language models (LMs) fine-tuned on AD transcripts perform well, little research has explored the effects of the gender of the speakers represented by these transcripts. This work addresses gender confounding in dementia detection and proposes two methods: the $\textit{Extended Confounding Filter}$ and the $\textit{Dual Filter}$, which isolate and ablate weights associated with gender. We evaluate these methods on dementia datasets with first-person narratives from patients with cognitive impairment and healthy controls. Our results show transformer models tend to overfit to training data distributions. Disrupting gender-related weights results in a deconfounded dementia classifier, with the trade-off of slightly reduced dementia detection performance.
Related papers
- Devising a Set of Compact and Explainable Spoken Language Feature for Screening Alzheimer's Disease [52.46922921214341]
Alzheimer's disease (AD) has become one of the most significant health challenges in an aging society.<n>We devised an explainable and effective feature set that leverages the visual capabilities of a large language model (LLM) and the Term Frequency-Inverse Document Frequency (TF-IDF) model.<n>Our new features can be well explained and interpreted step by step which enhance the interpretability of automatic AD screening.
arXiv Detail & Related papers (2024-11-28T05:23:22Z) - On the Within-class Variation Issue in Alzheimer's Disease Detection [60.08015780474457]
Alzheimer's Disease (AD) detection employs machine learning classification models to distinguish between individuals with AD and those without.<n>In this work, we found using a sample score estimator can generate sample-specific soft scores aligning with cognitive scores.<n>We propose two simple yet effective methods: Soft Target Distillation (SoTD) and Instance-level Re-balancing (InRe)
arXiv Detail & Related papers (2024-09-22T02:06:05Z) - A New Benchmark and Reverse Validation Method for Passage-level
Hallucination Detection [63.56136319976554]
Large Language Models (LLMs) generate hallucinations, which can cause significant damage when deployed for mission-critical tasks.
We propose a self-check approach based on reverse validation to detect factual errors automatically in a zero-resource fashion.
We empirically evaluate our method and existing zero-resource detection methods on two datasets.
arXiv Detail & Related papers (2023-10-10T10:14:59Z) - Exploring Multimodal Approaches for Alzheimer's Disease Detection Using
Patient Speech Transcript and Audio Data [10.782153332144533]
Alzheimer's disease (AD) is a common form of dementia that severely impacts patient health.
This study investigates various methods for detecting AD using patients' speech and transcripts data from the DementiaBank Pitt database.
arXiv Detail & Related papers (2023-07-05T12:40:11Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
Alzheimer's disease (AD) is particularly prominent in older adults.
Recent advances in pre-trained models motivate AD detection modeling to shift from low-level features to high-level representations.
This paper presents several efficient methods to extract better AD-related cues from high-level acoustic and linguistic features.
arXiv Detail & Related papers (2023-03-14T16:03:28Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Exploiting prompt learning with pre-trained language models for
Alzheimer's Disease detection [70.86672569101536]
Early diagnosis of Alzheimer's disease (AD) is crucial in facilitating preventive care and to delay further progression.
This paper investigates the use of prompt-based fine-tuning of PLMs that consistently uses AD classification errors as the training objective function.
arXiv Detail & Related papers (2022-10-29T09:18:41Z) - Data Augmentation for Dementia Detection in Spoken Language [1.7324358447544175]
Recent deep-learning techniques can offer a faster diagnosis and have shown promising results.
They require large amounts of labelled data which is not easily available for the task of dementia detection.
One effective solution to sparse data problems is data augmentation, though the exact methods need to be selected carefully.
arXiv Detail & Related papers (2022-06-26T13:40:25Z) - GPT-D: Inducing Dementia-related Linguistic Anomalies by Deliberate
Degradation of Artificial Neural Language Models [7.8430387435520625]
We propose a novel method by which a Transformer DL model (GPT-2) pre-trained on general English text is paired with an artificially degraded version of itself (GPT-D)
This technique approaches state-of-the-art performance on text data from a widely used "Cookie Theft" picture description task, and unlike established alternatives also generalizes well to spontaneous conversations.
Our study is a step toward better understanding of the relationships between the inner workings of generative neural language models, the language that they produce, and the deleterious effects of dementia on human speech and language characteristics.
arXiv Detail & Related papers (2022-03-25T00:25:42Z) - SLA$^2$P: Self-supervised Anomaly Detection with Adversarial
Perturbation [77.71161225100927]
Anomaly detection is a fundamental yet challenging problem in machine learning.
We propose a novel and powerful framework, dubbed as SLA$2$P, for unsupervised anomaly detection.
arXiv Detail & Related papers (2021-11-25T03:53:43Z) - Explainable Identification of Dementia from Transcripts using
Transformer Networks [0.0]
Alzheimer's disease (AD) is the main cause of dementia which is accompanied by loss of memory and may lead to severe consequences in peoples' everyday life if not diagnosed on time.
We introduce two multi-task learning models, where the main task refers to the identification of dementia (binary classification) and the auxiliary one corresponds to the identification of the severity of dementia (multiclass classification)
Our model obtains accuracy equal to 84.99% on the detection of AD patients in the multi-task learning setting.
arXiv Detail & Related papers (2021-09-14T21:49:05Z) - Multi-Modal Detection of Alzheimer's Disease from Speech and Text [3.702631194466718]
We propose a deep learning method that utilizes speech and the corresponding transcript simultaneously to detect Alzheimer's disease (AD)
The proposed method achieves 85.3% 10-fold cross-validation accuracy when trained and evaluated on the Dementiabank Pitt corpus.
arXiv Detail & Related papers (2020-11-30T21:18:17Z) - The Gap on GAP: Tackling the Problem of Differing Data Distributions in
Bias-Measuring Datasets [58.53269361115974]
Diagnostic datasets that can detect biased models are an important prerequisite for bias reduction within natural language processing.
undesired patterns in the collected data can make such tests incorrect.
We introduce a theoretically grounded method for weighting test samples to cope with such patterns in the test data.
arXiv Detail & Related papers (2020-11-03T16:50:13Z) - A Tale of Two Perplexities: Sensitivity of Neural Language Models to
Lexical Retrieval Deficits in Dementia of the Alzheimer's Type [10.665308703417665]
In recent years there has been a burgeoning interest in the use of computational methods to distinguish between elicited speech samples produced by patients with dementia, and those from healthy controls.
The difference between perplexity estimates from two neural language models (LMs) has been shown to produce state-of-the-art performance.
We find that perplexity of neural LMs is strongly and differentially associated with lexical frequency, and that a mixture model resulting from interpolating control and dementia LMs improves upon the current state-of-the-art for models trained on transcript text exclusively.
arXiv Detail & Related papers (2020-05-07T16:22:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.