Prediction of Bank Credit Ratings using Heterogeneous Topological Graph Neural Networks
- URL: http://arxiv.org/abs/2506.06293v1
- Date: Sat, 17 May 2025 13:49:25 GMT
- Title: Prediction of Bank Credit Ratings using Heterogeneous Topological Graph Neural Networks
- Authors: Junyi Liu, Stanley Kok,
- Abstract summary: This research utilizes persistent homology to construct a network that captures relationships among banks and combines this with a traditional lending network to create a heterogeneous network.<n> Experiments on a global, real-world dataset validate the effectiveness of HTGNN.<n>This research has implications for investors and regulatory bodies in enhancing proactive risk mitigation and the implementation of effective market interventions.
- Score: 2.7613060052810914
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Agencies such as Standard & Poor's and Moody's provide bank credit ratings that influence economic stability and decision-making by stakeholders. Accurate and timely predictions support informed decision-making, regulatory actions, and investor protection. However, a complete interbank connection graph is often unavailable due to privacy concerns, complicating the direct application of Graph Neural Networks (GNNs) for rating prediction. our research utilizes persistent homology to construct a network that captures relationships among banks and combines this with a traditional lending network to create a heterogeneous network that integrates information from both sources, leading to improved predictions. Experiments on a global, real-world dataset validate the effectiveness of HTGNN. This research has implications for investors and regulatory bodies in enhancing proactive risk mitigation and the implementation of effective market interventions.The code can be find at https://github.com/Liu-Jun-Yi/HTGNN.
Related papers
- Credit Risk Analysis for SMEs Using Graph Neural Networks in Supply Chain [2.060688901523233]
This paper introduces a Graph Neural Network (GNN)-based framework to map spatial dependencies and predict loan default risks.<n>Tests on real-world datasets from Discover and Ant Credit show the GNN surpasses traditional and other GNN baselines.<n>It also helps regulators model supply chain disruption impacts on banks, accurately forecasting loan defaults from material shortages, and offers Federal Reserve stress testers key data for CCAR risk buffers.
arXiv Detail & Related papers (2025-07-10T15:33:53Z) - Uncertainty-Aware Graph Neural Networks: A Multi-Hop Evidence Fusion Approach [55.43914153271912]
Graph neural networks (GNNs) excel in graph representation learning by integrating graph structure and node features.<n>Existing GNNs fail to account for the uncertainty of class probabilities that vary with the depth of the model, leading to unreliable and risky predictions in real-world scenarios.<n>We propose a novel Evidence Fusing Graph Neural Network (EFGNN for short) to achieve trustworthy prediction, enhance node classification accuracy, and make explicit the risk of wrong predictions.
arXiv Detail & Related papers (2025-06-16T03:59:38Z) - Applying Hybrid Graph Neural Networks to Strengthen Credit Risk Analysis [4.457653449326353]
This paper presents a novel approach to credit risk prediction by employing Graph Convolutional Neural Networks (GCNNs)
The proposed method addresses the challenges faced by traditional credit risk assessment models, particularly in handling imbalanced datasets.
The study demonstrates the potential of GCNNs in improving the accuracy of credit risk prediction, offering a robust solution for financial institutions.
arXiv Detail & Related papers (2024-10-05T20:49:05Z) - Uncertainty in Graph Neural Networks: A Survey [47.785948021510535]
Graph Neural Networks (GNNs) have been extensively used in various real-world applications.<n>However, the predictive uncertainty of GNNs stemming from diverse sources can lead to unstable and erroneous predictions.<n>This survey aims to provide a comprehensive overview of the GNNs from the perspective of uncertainty.
arXiv Detail & Related papers (2024-03-11T21:54:52Z) - Attention-based Dynamic Multilayer Graph Neural Networks for Loan Default Prediction [4.0990577062436815]
We present a model for credit risk assessment leveraging a dynamic multilayer network built from a Graph Neural Network and a Recurrent Neural Network.
We test our methodology in a behavioural credit scoring context using a dataset provided by U.S. mortgage financier Freddie Mac.
arXiv Detail & Related papers (2024-02-01T03:20:53Z) - Company-as-Tribe: Company Financial Risk Assessment on Tribe-Style Graph
with Hierarchical Graph Neural Networks [62.94317686301643]
Company financial risk is ubiquitous and early risk assessment for listed companies can avoid considerable losses.
Traditional methods mainly focus on the financial statements of companies and lack the complex relationships among them.
We propose a novel Hierarchical Graph Neural Network (TH-GNN) for Tribe-style graphs via two levels, with the first level to encode the structure pattern of the tribes with contrastive learning, and the second level to diffuse information based on the inter-tribe relations.
arXiv Detail & Related papers (2023-01-31T09:17:13Z) - Unraveling Privacy Risks of Individual Fairness in Graph Neural Networks [66.0143583366533]
Graph neural networks (GNNs) have gained significant attraction due to their expansive real-world applications.
To build trustworthy GNNs, two aspects - fairness and privacy - have emerged as critical considerations.
Previous studies have separately examined the fairness and privacy aspects of GNNs, revealing their trade-off with GNN performance.
Yet, the interplay between these two aspects remains unexplored.
arXiv Detail & Related papers (2023-01-30T14:52:23Z) - Trustworthy Graph Neural Networks: Aspects, Methods and Trends [115.84291569988748]
Graph neural networks (GNNs) have emerged as competent graph learning methods for diverse real-world scenarios.
Performance-oriented GNNs have exhibited potential adverse effects like vulnerability to adversarial attacks.
To avoid these unintentional harms, it is necessary to build competent GNNs characterised by trustworthiness.
arXiv Detail & Related papers (2022-05-16T02:21:09Z) - A Comprehensive Survey on Trustworthy Graph Neural Networks: Privacy,
Robustness, Fairness, and Explainability [59.80140875337769]
Graph Neural Networks (GNNs) have made rapid developments in the recent years.
GNNs can leak private information, are vulnerable to adversarial attacks, can inherit and magnify societal bias from training data.
This paper gives a comprehensive survey of GNNs in the computational aspects of privacy, robustness, fairness, and explainability.
arXiv Detail & Related papers (2022-04-18T21:41:07Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
We propose a framework of relational graph convolutional networks methods for fraudulent behaviour prevention in the financial services of a Super-App.
We use an interpretability algorithm for graph neural networks to determine the most important relations to the classification task of the users.
Our results show that there is an added value when considering models that take advantage of the alternative data of the Super-App and the interactions found in their high connectivity.
arXiv Detail & Related papers (2021-07-29T00:02:06Z) - Every Corporation Owns Its Structure: Corporate Credit Ratings via Graph
Neural Networks [2.7910505923792637]
We propose a novel model, Corporate Credit Rating via Graph Neural Networks, CCR-GNN for brevity.
We firstly construct individual graphs for each corporation based on self-outer product then use GNN to model the feature interaction explicitly.
Experiments conducted on the Chinese public-listed corporate rating dataset, prove that CCR-GNN outperforms the state-of-the-art methods consistently.
arXiv Detail & Related papers (2020-11-27T02:57:14Z) - Super-App Behavioral Patterns in Credit Risk Models: Financial,
Statistical and Regulatory Implications [110.54266632357673]
We present the impact of alternative data that originates from an app-based marketplace, in contrast to traditional bureau data, upon credit scoring models.
Our results, validated across two countries, show that these new sources of data are particularly useful for predicting financial behavior in low-wealth and young individuals.
arXiv Detail & Related papers (2020-05-09T01:32:03Z) - Linking Bank Clients using Graph Neural Networks Powered by Rich
Transactional Data [2.1169216065483996]
We propose a new graph neural network model, which uses not only the topological structure of the network but rich time-series data available for the graph nodes and edges.
The proposed model outperforms the existing approaches, with a significant gap in ROC AUC score on link prediction problem and also allows to improve the quality of credit scoring.
arXiv Detail & Related papers (2020-01-23T10:02:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.